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Abstract: This study proposes a method for measuring the degree of automation.

First, we relate a task-based model to neoclassical production function. We demon-

strate how the automation degree is involved in the production function. Second,

we estimate a CES production function. Specifying capital- and labor-input effi-

ciency functions, we calculate the automation degree using the elasticity estimate.

Examining Japanese manufacturing industries from 1994 to 2020, we find that the

average automation degree across these industries increased slowly, similar to the

share of capital income. We also find a significant impact of ICT capital, robotics,

and R&D on the automation degree.
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1. Introduction

Owing to recent advances in Information and Communication Technology (ICT) and

Artificial Intelligence (AI), there has been a rapid increase in automation, which sug-

gests the replacement of labor with machines (see Autor and Dorn, 2013; Cortes et

al., 2017; Graetz and Michaels, 2017, 2018; Acemoglu and Restrepo, 2020, 2022).

Therefore, many studies have explored the impact of automation on the labor mar-

ket and economic growth (see, for example, Zeira, 1998; Zuleta, 2008; Acemoglu,

2010; Peretto and Seater, 2013; Acemoglu and Restrepo, 2018; Aghion et al., 2019;

Hemous and Olsen, 2022; Debraj and Mookherjee, 2022; Nakamura and Zeira, 2024;

Acemoglu et al., 2024). According to these theories, the degree of automation, the

ratio of automated tasks to the total number of tasks, plays an important role.

However, it takes work to count these tasks empirically. The empirical methodology

employs data on industrial robotics exposure as a proxy for automation.1 However,

it cannot consider other machines and tools that increase automation. ICT capital

and R&D expenditure also significantly increase automation. Therefore, exploring

how the degree of automation increases is worthwhile.

This study introduces a novel method for measuring the degree of automation.

First, we consider a theory for measuring the degree of automation. By relating

a task-based model to a neoclassical production function, we demonstrate how the

output per labor unit, the capital per labor unit, and the degree of automation

are related. We derive a neoclassical production function consisting of two parts.

The first is the relationship between the output and the automation degree. The

second is the relationship between the capital per labor unit and the automation

degree. This comprehensive approach ensures we can obtain the automation degree

consistent with the output and capital per labor unit. Furthermore, we investigate a

scenario in which the neoclassical production function reduces a constant elasticity

of substitution (CES) production function.

Second, applying our theory, we measure the degree of automation. Considering

theoretical and practical advantages compared to other input efficiency specifica-

tions, the functions of capital- and labor-input efficiency are assumed to be Pareto

distributions, which are deterministic. Owing to this assumption, the degree of au-

tomation is connected to these two functions. Examining panel data of 54 Japanese

manufacturing industries from 1994 to 2020, we estimated a CES production func-

tion and found that the elasticity of substitution between capital and labor is 1.1.

We calculated the automation degree using the elasticity estimate. There was a sig-

1Mann and Puttermann (2023) considered the share of automation patents to the total patents.
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nificant variance among those industries. The average degree of automation across

these industries slowly increased from 0.411 to 0.428 during the sample period. The

increase in the degree was similar to the share of capital income of the Japanese econ-

omy. Examining a subsample of industries with significant investment, we found a

more considerable increase in the average degree from 0.407 to 0.454. In addi-

tion, using the whole sample, we found a significant positive impact of ICT capital,

robotics stock, and R&D expenditure on the automation degree. These findings pro-

vide valuable insights into the effects of automation on the Japanese manufacturing

industries.

This study introduces a novel method for exploring the degree of automation,

a unique contribution to the literature. By connecting a task-based model to a

CES production function, we propose a new theory for measuring the degree of au-

tomation. This method, which significantly advances the field, allows us to quickly

obtain the automation degree using the elasticity estimate, sparking further discus-

sion about the degree’s increase.

The remainder of this paper is organized as follows: Section 2 comprehensively

reviews the related literature. Section 3 describes the formation of a neoclassical

production function through automation. Section 4 thoroughly examines the as-

sumption of labor- and capital-input efficiency functions. Section 5 estimates the

CES production function and calculates the automation degree, providing a dis-

cussion of the impact of several variables on the degree of automation. Section 6

concludes the study. The Appendix presents proofs and extensions.

2. Related literature

This study is related to four lines of research. The first line employs task-based

models (Zeira, 1998; Nakamura and Nakamura, 2008; Nakamura, 2009; Acemoglu,

2010; Acemoglu and Restrepo, 2018; Aghion et al., 2019; Hemous and Olsen, 2022;

Nakamura and Zeira, 2024). These studies explore automation, wages, and economic

growth by examining the conditions for automation adoption.

Applying our task-based model, we decompose the relationship between output

and capital per labor unit into two relationships: the first is between the output

and the degree of automation, and the second is between the automation degree

and capital per labor unit. Therefore, we can observe the degree of automation in

a CES production function.2

2Several studies examine the robotics capital in a CES production function (Zuleta, 2008;

Peretto and Seater, 2013; Berg et al., 2018; Dinlersoz and Zoltan, 2018; Graetz and Michaels,

2018; Gomes, 2018). These studies implicitly consider increased automation by the accumulation
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The second line of research is empirical studies on automation. Many studies

have empirically investigated the impact of automation on wages, employment, and

economic growth (see, for example, Autor and Dorn, 2013; Cortes et al., 2017;

Graetz and Michaels, 2017, 2018; Acemoglu and Restrepo, 2020, 2022; Gregory et

al., 2022; Adachi et al., 2022; Kikuchi et al., 2024). Acemoglu et al. (2024) explored

task shares in which the task share was the integral of input efficiency, with the

integral interval being the range of input use. In their study, examining these task

shares, the US wage structure was investigated.3

This study measures the degree of automation, a crucial aspect of modern indus-

trial processes. We calculated the degree of automation by estimating the elasticity

of substitution between capital and labor in a standard CES production function.

We also estimated the impact of ICT capital and robotics stock on the degree of

automation.

The third line of research, which delves into the microfoundation of a CES pro-

duction function, is essential. Assuming statistical distributions, several studies

have derived either a Cobb-Douglas or CES production function as the aggregate

function. Jones (2005) considers capital and labor stochastic coefficients to follow a

Pareto distribution and derive a Cobb-Douglas production function. Growiec (2013)

examines the Weibull distribution for stochastic coefficients, which implies a CES

production function. These findings are crucial in understanding the production

functions.

In our task-based model, these two coefficients are deterministic but not stochas-

tic. These coefficients evolve with automation, and a production function is derived

from equilibrium. A CES production function is implied when these coefficients

satisfy a specific condition. Under the CES production function, we use Pareto

distributions to specify capital- and labor-input efficiency functions.4

Finally, the fourth line of research regards estimating a CES production function.

Many studies have estimated the elasticity of substitution between capital and labor

(see a survey by Klump et al., 2012; Knoblach and Stockl, 2020). Examining the

Japanese manufacturing industries, we found the elasticity of substitution between

of robotics capital. Our study explicitly explores the degree of automation.
3Assuming the production function with the substitution elasticity between tasks being higher

than one, the task shares determined the weights of inputs in the aggregate production function

with varying elasticity of substitution between capital and labor.
4Using task-based models, Nakamura and Nakamura (2008) and Nakamura (2009, 2010) also

considered a microfoundation of a CES production function. We overcome the shortcomings of

these studies, that is, the lack of a complete examination of the substitution elasticity, the lack of

reasons for the assumption of input efficiency functions, and the lack of empirical analysis.
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capital and labor to be greater than one but close to one. We calculated the degree

of automation using the elasticity estimate. Our proposed method can improve the

potency of the CES estimation with its wide application range.

3. Neoclassical production function in our task-based model

Firms are perfectly competitive in a closed economy. The production of goods is

considered through a continuum of tasks normalized to unity. Output is assumed

to be equal to the minimum value from the tasks:

Yt = min{zt(i)|i ∈ [0, 1]}, (1)

where Yt is the output at time t and zt(i) is the input of task i at time t. We assume

that in a task, machines and labor are perfectly substitutable:

zt(i) = θ(i)xt(i) + λ(i)lt(i), (2)

where xt(i) and lt(i) are the capital and labor inputs in task i at time t, respectively.

θ(i) and λ(i) represent the capital- and labor-input efficiency of task i, respectively.

These two input efficiencies are assumed to be positive. We have two reasons for the

assumption (1). The first reason is the idea of a bottleneck in a production process.

Even with an increase in the input of a task, the output does not increase due to

a bottleneck in the other tasks. The second reason is to consider any substitution

elasticity between capital and labor under the lowest bound of the substitution

elasticity being zero.

Tasks are placed in an order wherein those in which capital is used relatively

more efficiently than labor precede those in which capital is used relatively less

efficiently than labor:
dλ(i)
θ(i)

di
≥ 0. (3)

We consider the degree of automation, which refers to the range of machine-

use tasks. Firms adopt automation in the i-th task if the cost of machines use is

lower than that of labor: Rt
θ(i)
≤ wt

λ(i)
. Assuming that the automation technology is

available, the automation condition is

wt
Rt

=
λ(at)

θ(at)
, (4)

where Rt and wt are the gross interest rate and wage rate at time t, respectively.

The gross interest rate is the sum of the interest rate and the depreciation rate by

Rt = rt + δ. δ is the depreciation rate of capital. at is the degree of automation,
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Namely, 1−at is the range of labor-use tasks. When the ratio of the interest rate to

the wage rate declines, machines replace labor in some tasks. Therefore, automation

increases because it lowers the cost of production.

From equation (1), for any i ∈ [0, at] and j ∈ (at, 1], the input quantities satisfy

θ(i)xt(i) = λ(j)lt(j).

Therefore, the following holds:

xt(i) =
θ(0)xt(0)

θ(i)
and lt(j) =

λ(1)lt(1)

λ(j)
.

Integrating xt(i) and lt(j) in the ranges [0, at] and (at, 1], respectively, we obtain

Θ(at)Kt = θ(0)xt(0) and Λ(at)Lt = λ(1)lt(1), (5)

where Kt and Lt are the stock of capital and the amount of labor, respectively.

Kt ≡
∫ at

0
xt(i)di and Lt ≡

∫ 1

at
lt(j)dj.

Θ(at) and Λ(at) represent capital- and labor input efficiencies in aggregate form,

respectively.

Θ(at) ≡
[∫ at

0
θ(i)−1di

]−1

and Λ(at) ≡
[∫ 1

at
λ(j)−1dj

]−1

. (6)

The aggregate input efficiency has the following relationship with the task’s input

efficiency:
dΘ(at)

−1

dat
= θ(at)

−1 and
dΛ(at)

−1

dat
= −λ(at)

−1. (7)

It holds that Θ′(at) < 0 and Λ′(at) > 0. Capital input efficiency decreases, but labor

input efficiency increases with automation.

Equation (5) implies

Θ(at)Kt = Λ(at)Lt.

Therefore, we obtain the following relationship between the degree of automation

and the capital/labor ratio:

Ω(at) = kt, (8)

where Ω(at) ≡ Λ(at)
Θ(at)

and kt ≡ Kt
Lt

. It holds that Ω′(at) > 0 because Θ′(at) < 0 and

Λ′(at) > 0.

From equations (4) and (7), the condition for automation adoption is rewritten

as:
wt
Rt

=

[
Λ(at)

Θ(at)

]2 [
−Θ′(at)

Λ′(at)

]
. (9)
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As Appendix B.1 shows, equation (3) is equal to the following condition:

d ln Λ(at)
Θ(at)

d ln at
≥ 1

2

d ln −Λ′(at)
Θ′(at)

d ln at
. (10)

As shown in the following, this assures the concavity of a production function.

Using equation (5), we consider the following Leontief production function in

which the coefficients rely on the degree of automation:

Yt = min {Θ(at)Kt,Λ(at)Lt} . (11)

Equation (8) implies the degree of automation, which is an increasing function of

the capital/labor ratio:

at = a(kt), (12)

where a(kt) ≡ Ω−1(kt) and kt ≡ Kt
Lt

. It holds that a′(kt) > 0, limkt→0 a(kt) = 0, and

a(kt) ≤ 1. Consequently, the production function (11) with equation (12) can be

represented as follows:

Yt = F (Kt, Lt), (13)

where F (Kt, Lt) ≡ Θ(a(kt))Kt = Λ(a(kt))Lt.

We now examine the properties of the production function (13). A production

function is defined as a neoclassical production function if the production function

is homogeneous degree one and satisfies

∂Yt
∂Kt

> 0,
∂Yt
∂Lt

> 0,
∂2Yt
∂K2

t

≤ 0,
∂2Yt
∂L2

t

≤ 0, and
∂2Yt

∂Kt∂Lt
≥ 0.

Proposition 1: (Production function in our task-based model). Under the assump-

tion (3), the production function (13) equals a neoclassical production function.

Appendix A.1 provides proof.

The neoclassical production function, which describes the relationship between

output per labor unit and capital per labor unit, is decomposed into pairs of output

per labor unit, degree of automation, and capital per labor unit (Figure 1). Equa-

tion (3), namely, equation (10), ensures concavity of the neoclassical production

function.5 The production function per labor unit is described as follows:

yt = f(kt),

where f(kt) = Λ(a(kt)). Under equation (3), f(kt) satisfies f ′(kt) > 0 and f ′′(kt) ≤
0. Figure 2 illustrates the formation of a neoclassical production function. For

5It also implies the second-order condition of equation (11) (Appendix B.2).
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simplicity, kt is assumed exogenously. When the capital/labor ratio increases from

k0 to k1 to k2, the degree of automation increases because of a decline in the ratio of

the interest rate to the wage rate. The Leontief production function then slides in

the north-easterly direction with an increase in automation, for example, from Λ(a0)

to Λ(a1) to Λ(a2). Given the arrangement of the tasks in equation (3), the long-run

production function satisfies the properties of a neoclassical production function.6

4. CES production function in the task-based model

4.1 Condition for the CES production function

In this section, we explore the scenario in which a neoclassical production function

reduces a CES production function.

Proposition 2: (CES production function in our task-based model). Suppose that

bΘ(at)
ρ + (1− b)Λ(at)

ρ = τ, (14)

where we assume that 0 < b < 1 and τ > 0. Our production function (13) is equal

to the CES production function:

Yt = C
[
bK−ρt + (1− b)L−ρt

]−1/ρ
, (15)

where C = τ
1
ρ . When ρ = 0, equation (14) reduces

b ln Θ(at) + (1− b) ln Λ(at) = ln τ. (16)

Under equation (16), the Cobb-Douglas production function is:

Yt = cKb
tL

1−b
t ,

where c = τ .

Appendix A.2 provides proof.

In equations (14) and (16), a more (less) rapid decrease in capital-input efficiency

symmetrically corresponds to a more (less) rapid increase in labor-input efficiency.

Under equations (14) and (16), the neoclassical production function is confined to

a CES production function with ρ 6= 0 and a Cobb-Douglas production function

with ρ = 0, respectively. The elasticity of substitution between capital and labor is

σ = 1
1+ρ

, where σ ≥ 0. Equations (14) and (16) also imply a restriction between the

capital- and labor-input efficiencies of a task, namely between θ(at) and λ(at).

6Automation does not appear in TFP (Nakamura and Nakamura, 2009; Prettner, 2019).

7



The wage and interest rates can be represented by the degree of automation:

wt = C−ρ(1− b)Λ(at)
1+ρ and Rt = C−ρbΘ(at)

1+ρ. (17)

Appendix B.3 provides proof. When automation increases, the wage rate increases,

but the interest rate decreases.

4.2 Degree of automation

We assume capital- and labor-input efficiency functions to calculate the degree of

automation. In Subsections 4.2.1 and 4.2.2, we examine when CES and Cobb-

Douglas production functions are implied, respectively.

4.2.1 Degree of automation in CES production function

The degree of automation can be considered as a stock variable. Therefore, it can be

considered a cumulative distribution function. We examine a statistical distribution

when exploring capital- and labor-input efficiency functions.

We denote the capital- and labor-input efficiency as

Θt = Θ(at) and Λt = Λ(at). (18)

Equation (18) is rewritten as follows:

at = Hc(Θ
−1
t ) and 1− at = Gc(Λ

−1
t ) for ρ > 0,

at = Hs(Θt) and 1− at = Gs(Λt) for − 1 ≤ ρ < 0.
(19)

We assume that 0 ≤ Hj(·) ≤ 1 and 0 ≤ Gj(·) ≤ 1 (j = c, s). We consider the

difference in the representation between ρ > 0 and ρ < 0 for the consistency with

equation (20) in Assumption 1.7 We make the following assumption.

Assumption 1: The functions, Hj(X) and Gj(Z) are assumed to be the following

Pareto cumulative distributions:

Hj(X) = 1−
(
hj
X

)ξ
and Gj(Z) = 1−

(
gj
Z

)ζ
, (20)

where j = c, s. We assume that hj > 0, gj > 0, ξ > 0, and ζ > 0.

In Theorem 1, we consider the functions of capital- and labor-input efficiency,

which satisfy the CES restriction (14) and Assumption 1.

7Capital and labor are gross complements and gross substitutes when ρ > 0 and ρ < 0, respec-

tively (see Acemoglu, 2002; Klump et al., 2012; Knoblach and Stockl, 2020). Therefore, we use

these abbreviations.
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Theorem 1: (Input efficiency with a Pareto distribution). Suppose equation (14)

and Assumption 1. Hj(·) and Gj(·) are represented as follows:

Hc(Θ
−1
t ) = 1− b

τ

(
1

Θ−1
t

)ρ
and Gc(Λ

−1
t ) = 1− 1−b

τ

(
1

Λ−1
t

)ρ
for ρ > 0,

Gs(Θt) = 1− b
τ

(
1

Θt

)−ρ
and Hs(Λt) = 1− 1−b

τ

(
1

Λt

)−ρ
for − 1 ≤ ρ < 0.

.

(21)

Appendix A.3 provides proof.

In equations (19) and (21), the degree of automation is connected with capital-

and labor-input efficiency functions by Pareto cumulative distributions. Note that

these distributions are deterministic but not stochastic. Figure 3.1 illustrates the

Pareto cumulative distributions for 0 < ρ (σ < 1). In this figure, the vertical axis

is at and the horizontal axis is Θ−1
t . Assuming b = 0.5 and τ = 1 as a benchmark,

we examine ρ = 0.5, 1, and 1.5, respectively, corresponding to the broken, solid,

and dotted lines. Three lines are interesting when Θ−1
t = 1. A decrease in ρ, which

increases the elasticity of substitution between capital and labor, implies a less rapid

increase in automation with an increase in Θ−1
t . In Figure 3.2 which corresponds

with −1 ≤ ρ < 0 (σ > 1), the vertical axis is at, and the horizontal axis is Λt.

Assuming b = 0.5 and τ = 1, we examine ρ = −0.2, −0.5, and −0.8, corresponding

to the broken, solid, and dotted lines. The three lines intersect when Λt = 1. An

increase in −ρ, which increases the elasticity of substitution between capital and

labor, implies a more rapid increase in automation with an increase in Λt.

Table 1 summarizes capital- and labor-input efficiency functions implied by equa-

tions (19) and (21). We observe symmetric relationships between these two. Using

equation (7), we also obtain θ(i) and λ(i), which are consistent with the aggregate

form. Note that C = τ
1
ρ .

Table 1. Capital- and labor-input efficiency functions

Θ(at) Λ(at)
Λ(at)
Θ(at)

ρ > 0 C
(

1−at
b

) 1
ρ C

(
at

1−b

) 1
ρ

(
at/(1−b)
(1−at)/b

) 1
ρ

−1 ≤ ρ < 0 C
(
at
b

) 1
ρ

(
1−at
1−b

) 1
ρ

(
at/b

(1−at)/(1−b)

)− 1
ρ

θ(i) λ(i) λ(i)/(1−b)
θ(i)/b

ρ > 0 Cbρ
(

1−i
b

) 1+ρ
ρ C(1− b)ρ

(
i

1−b

) 1+ρ
ρ

(
i/(1−b)
(1−i)/b

) 1+ρ
ρ

−1 ≤ ρ < 0 Cb(−ρ)
(
i
b

) 1+ρ
ρ C(1− b)(−ρ)

(
1−i
1−b

) 1+ρ
ρ

(
i/b

(1−i)/(1−b)

)− 1+ρ
ρ

9



We now explain several significant theoretical and practical advantages of these

input efficiency functions over other specifications.

(i) Our research’s key advantage lies in its straightforward approach to establishing

a relationship between the degree of automation and the share of labor and capital

income, as elucidated in Corollary 1. This clear and straightforward relationship

provides a confident understanding of how automation impacts the distribution of

factor incomes.

(ii) Second, we can assure 0 ≤ at ≤ 1 for any parameter value, as elucidated in

Corollary 2.

(iii) Third, we can obtain the degree of automation only by estimating the CES

production function. As the automation degree is involved in the CES production

function, estimating the other equations and parameters is unnecessary.8 Therefore,

the input efficiency functions noted in Table 1 stand out as a simple and tractable

function among the possible functions of input efficiency.

(iv) Finally, we provide the micro foundation of the input efficiency functions noted

in Table 1. As demonstrated in Appendix A.4, the input efficiency functions can

also be derived using the equilibrium conditions.

Corollary 1 underscores a straightforward relationship between the degree of

automation and the share of labor and capital income.

Corollary 1: (Income shares). Suppose equation (14) and Assumption 1. The

income shares are represented by the degree of automation:

wtLt
Yt

= at and RtKt
Yt

= 1− at for ρ > 0,

wtLt
Yt

= 1− at and RtKt
Yt

= at for − 1 ≤ ρ < 0.
(22)

Appendix A.5 provides proof.

When ρ > 0 (0 ≤ σ < 1), the automation degree equals the labor income share.

When −1 ≤ ρ < 0 (σ > 1), the automation degree equals the share of capital

income.

Corollary 2 examines the decomposition of a CES production function.

Corollary 2: (Decomposition of a CES production function). Suppose equation

(14) and Assumption 1. A CES production function is decomposed as follows:

yt = C
(
at

1−b

) 1
ρ and at = (1−b)ktρ

b+(1−b)ktρ for ρ > 0,

yt = C
(

1−at
1−b

) 1
ρ and at = bkt

−ρ

bkt
−ρ+(1−b) for − 1 ≤ ρ < 0.

(23)

8If we examine the other statistical distribution, we may need to estimate more parameters that

do not appear in a production function.

10



Appendix A.6 provides proof.

In equation (23), a CES production function is decomposed between the output

per labor unit and the degree of automation and between the degree of automation

and the capital per labor unit. The output per labor unit is bounded when ρ > 0

(σ < 1). The output per labor unit can increase infinitely when −1 ≤ ρ < 0 (σ > 1).

The accumulation of capital per labor unit increases automation because it increases

the ratio of the wage rate to the interest rate. Regardless of the sign of ρ, it holds

that a(0) = 0, ∂at
∂kt

> 0, ∂2at
∂k2t

< 0, and limkt→∞ a(kt) = 1. Therefore, the degree

of automation can asymptotically converge to one when the capital per labor unit

increases unboundedly.

Figure 4 illustrates the relationship between output per labor unit and the au-

tomation degree and between the automation degree and capital per labor unit. We

examine the difference in the elasticity of substitution between capital and labor.

When ρ > 0 (σ < 1), Λ(0) = 0 and limkt→∞ Λ(a(kt)) = (1 − b)−1/ρ. Λ(at) is a

concave function. Capital accumulation increases automation regardless of ρ > 0 or

ρ < 0. The automation degree asymptotically converges to one. When −1 ≤ ρ < 0

(σ > 1), it holds that Λ(0) > 0 and limat→1 Λ(at) =∞, implying a convex function

of Λ(at). Full automation can be asymptotically realized when the capital per labor

unit increases infinitely. Like ρ > 0, the automation degree increases with the capi-

tal per labor unit and asymptotically converges to one. As the production function

approaches the AK type, the difficulty in automation decreases because of greater

substitutability between capital and labor.

4.2.2 Degree of automation in the Cobb-Douglas production function

This subsection considers capital- and labor-input efficiency functions when ρ = 0.

We prioritize the continuity of the automation degree around ρ = 0 while losing some

of several advantages obtained under ρ 6= 0, which are explained in the previous

section.

We assume the capital input efficiency function as follows:

Θ(at) = C

(
1− ρat − b

b

) 1
ρ

. (24)

The CES restriction (14) implies the labor-input efficiency function:

Λ(at) = C

(
1 + ρ

at − b
1− b

) 1
ρ

. (25)

11



Using (7), we obtain the task’s capital- and labor-input efficiency functions: θ(i) =

Cb
(
1− ρ i−b

b

) 1+ρ
ρ and λ(i) = C(1− b)

(
1 + ρ i−b

1−b

) 1+ρ
ρ .

Corollary 3: (Decomposition of a Cobb-Douglas production function). Suppose

equations (14) and (24). When ρ = 0, we obtain a Cobb-Douglas production func-

tion, which is decomposed as follows:

yt = c exp

(
at − b
1− b

)
and at = b(1− b) ln kt + b. (26)

Appendix A.7 provides proof.

As shown in the proof, we can provide the continuity of the automation degree

around ρ = 0.9 Therefore, when ρ takes a value close to zero, we can use equations

(26) to measure the degree of automation. We also provide the micro foundation of

the capital- and labor-input efficiency functions in equations (24) and (25). These

input efficiency functions can also be derived using the equilibrium conditions (see

Appendix A.8). However, these two functions cannot imply the straightforward

relationship between the automation degree noted in Corollary 1. In addition, when

calculating the degree of automation by equation (26), we may need to assume a

parameter to assure 0 ≤ at ≤ 1 (see Appendix A.8).

4.3 Factor-augmenting technical change

We consider a change in input efficiency exogenously, which implies a factor-augmenting

technical change. Equation (2) is rewritten as follows:

zt(i) = AK,tθ(i)xt(i) + AL,tλ(i)lt(i),

where we assume that AK,t > 0 and AL,t > 0. Equation (6) implies:

AK,tΘ(at)Kt = AL,tΛ(at)Lt.

Equation (8) is rewritten as
Λ(at)

Θ(at)
=
AK,t
AL,t

kt.

Consequently, the production function is:

Yt = AK,tΘ(at)Kt = AL,tΛ(at)Lt.

9Henningsena and Henningsenb (2012) pointed out convergence problems and unstable results

in the CES estimation around ρ = 0, and suggested solutions.
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Now, we consider a CES production function with factor-augmented technical

progress. Regardless of technical progress, the CES production function must sat-

isfy equation (14). We have a CES production function with capital- and labor-

augmenting technical progress:

Yt = [b(AK,tkt)
−ρ + (1− b)(AL,tLt)−ρ]−1/ρ. (27)

See Appendix B.4. Note that we normalize τ = 1 in equation (14). When At =

AK,t = AL,t holds, it implies the CES production function with neutral technical

progress. The wage rate and interest rate are

wt = AL,t(1− b)Λ(at)
1+ρ and Rt = AK,tbΘ(at)

1+ρ.

The degree of automation is:

at =


(1−b)kρe,t
b+(1−b)kρe,t

for ρ > 0,

bk−ρe,t
bk−ρe,t+(1−b) for − 1 ≤ ρ < 0,

(28)

where ke,t is the capital per labor unit in efficiency units: ke,t =
AK,t
AL,t

kt. On the

one hand, an increase in capital use efficiency implies capital-augmenting technical

progress and increases the automation degree: ∂at
∂AK,t

> 0. On the contrary, an

increase in the efficiency of labor use implies labor-augmenting technical progress

and a decrease in the automation degree: ∂at
∂AL,t

< 0. Neutral technical progress does

not affect the degree of automation.

Finally, we consider the Cobb-Douglas production function with technical progress:

Yt = (AK,tKt)
b(AL,tLt)

1−b. The degree of automation is at = (1−b)ke,t
b+(1−b)ke,t .

5. Degree of automation with estimating a CES production function

5.1 Data description

The data were obtained from the Japan Industrial Productivity (JIP) database 2023.

We examined 54 manufacturing industries from 1994 to 2020. The sample size was

1440.10 We defined several variables to estimate a CES production function. Yi,t

is the real value-added output of industry i in period t. Ki,t is the capital stock

for industry i in period t, Li,t is the person-hour labor for industry i in period t.

Regarding Yi,0, Ki,0, and Li,0, we use the Divisa index. In the estimation of a CES

production function, we employed the FOC conditions. In these FOC conditions, we

used the capital and labor cost shares:
Rni,tKi,t

TCni,t
=

Rni,tKi,t/Pi,t

TCni,t/Pi,t
= Ri,tKi,t

Yi,t
and

wni,tLi,t

TCni,t
=

10We removed 18 data in one of 54 industries because the real added value of output was negative.
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wni,tLi,t/Pi,t

TCni,t/Pi,t
= wi,tLi,t

Yi,t
. Note that TCn

i,t = Rn
i,tKi,t + wni,tLi,t. Pt,i is the price level of

output. Rn
i,t and wni,t are the nominal interest and wage rates, respectively. Ri,t and

wi,t are the real interest and wage rates, respectively.

In estimating the automation condition, we examined the ICT capital stock, the

industrial robotics stock, and R&D expenditure. The ICT capital stock includes

information, communication, and software. vai,t, vbi,t, and vci,t are the ratio of ICT

capital stock to labor, robot stock to labor, and R&D expenditure to labor. These

three are also available from the JIP database. The data for industrial robotics stock

for industry i in period t are calculated using the Rath method (Moriwaki et al.,

2024). We examine the Instrumental Variable (IV) estimation with the instrumental

variables, which include the ratio of workers over fifty-five to the total workers and

the user cost of ICT capital stock. The data for workers over fifty-five were obtained

from the JIP 2023. The user cost of ICT capital stock is calculated by the ratio of

ICT capital cost to the total cost of production and the ratio of GDP to ICT capital

stock.

5.2 Estimation of a CES production function

We apply the normalization procedure of a CES production function developed by

de La Grandville (1989) because we can observe the exact impact of the elasticity

of substitution between capital and labor on output. This procedure also alleviates

convergence problems and unstable results. We estimate the CES production func-

tion with the FOCs. Rewriting the FOCs, we examine the cost shares of capital and

labor that help us to have a robust estimation because of the linearity of ρ. The

estimation equations are as follows:

ln
Yi,t
Yi,0

= −1

ρ
ln

bi
(

exp(gK(t− t0))
Ki,t

Ki,0

)−ρ
+ (1− bi)

(
exp(gL(t− t0))

Li,t
Li,0

)−ρ+εY i,t,

(29)

ln
Ri,tKi,t

Yi,t
= ln bi + ρ

(
ln
Yi,t
Ki,t

− ln
Yi,0
Ki,0

)
− ρgK(t− t0) + εRi,t, (30)

ln
wi,tLi,t
Yi,t

= ln(1− bi) + ρ

(
ln
Yi,t
Li,t
− ln

Yi,0
Li,0

)
− ρgL(t− t0) + εwi,t. (31)

where i = 1, · · · , 54 and t = 1994, 1995, · · · , 2020. The three error terms, εY i,t, εRi,t,

and εwi,t, are assumed to follow (0,Σ). We assume that gK ≥ 0 and gL ≥ 0. The

production function is the Hicks-natural type if it holds that gK = gL.

We simultaneously estimated equations (29)–(31) using a Nonlinear Seemingly

Unrelated Regression (NSUR) estimation, which was a Feasible Generalized Least

Squares (FGLS) estimation. In practice, we sampled geometric averages from the
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data to calculate Yi,0, Ki,0, and Li,0. For t0, we used the arithmetic average of

t = 1994, 1995, · · · , 2020. In practice, bi was fixed using the arithmetic average of

capital share from the data before the estimation.11 We have two estimations. In the

first estimation, equations (29)–(31) are estimated with the difference between gK

and gL. In the second estimation, we assume that gK = gL. Under this assumption,

technical progress is denoted as g. The estimated result is presented in Table 2.

Table 2. Estimation result of the CES production function

(29)− (31) ρ gK gL

−0.0919 0.0188 0.0055

(−8.55∗∗) (1.40) (0.65)

gK = gL ρ g

−0.110 0.0111

(−11.22∗∗) (2.26∗)

Note. The sample size is 1440. Numbers in parentheses show the asymptotic t-values.

Cluster-robust standard errors were calculated. ∗ and ∗∗ represent significance at the 5%

and 1% levels, respectively.

When we assumed the difference between gK and gL, neither labor- nor capital-

augmenting technical progress was significant.12 The elasticity of substitution is

σ̂ = (1 + ρ̂)−1 = 1.10. The elasticity estimate was significantly greater than one.

This implies that in production, capital and labor were imperfectly substitutable.

According to the survey of Klump et al. (2007) and Leon-Ledesma et al. (2010), the

elasticity estimate differed depending on a sample’s data. Several studies found the

elasticity estimate to be higher than one while it was close to one (see, for example,

Duffy and Papageorgiou, 2000; Hubmer, 2018).13 The finding of a substitutable

relationship between capital and labor is consistent with Japan’s declining share

of labor incomes. The neutral technical change was significantly positive when we

considered Hicks-neutral technical progress with the assumption gK = gL. The

elasticity of substitution is σ̂ = (1 + ρ̂)−1 = 1.12. Therefore, the elasticity estimate

was robust, regardless of the type of technical progress.

11Assuming bi = b, we examined the GMM estimation with Kmenta’s approximation of a CES

production function. The result depended on the instruments.
12If we consider the creation of new tasks, the aggregate production function has an endogenous

increase in terms of biased technical progress. Our result implies no need to consider new tasks

because of no increase in these terms.
13In Japan, the union membership rate has been declining. It may imply a large elasticity

estimate.
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5.3 Degree of automation implied by a CES production function

In Subsection 5.3.1, we delve into the degree of automation with the CES estimation

of the entire sample. However, it might be overly simplistic to assume the same elas-

ticity of substitution across all manufacturing industries. Therefore, in Subsection

5.3.2, we narrow our focus to a subsample of industries with substantial investment.

By estimating the substitution elasticity of these industries, we aim to highlight

increased automation.

5.3.1 Degree of automation using the whole sample

Using the estimation result of the CES production function noted in Table 2, we

calculate the degree of automation as follows:

ai,t =
bi
(
ki,t
ki,0

)−ρ
bi
(
ki,t
ki,0

)−ρ
+ (1− bi)

. (32)

This corresponds with equation (28) under ρ > 0 and gK = gL. In calculating the

automation degree, we examined the estimate ρ. The descriptive statistics for the

degree of automation are presented in Table 3. The sample size is 1440.

Table 3. Degree of automation calculated by equation (32)

mean s.e. min max

0.422 0.172 0.137 0.815

The average degree of automation was 0.422. The difference between the mini-

mum and maximum values was considerably large, with significant variance among

manufacturing industries. Therefore, the degree varies among these industries. The

average degree of automation across these industries increased from 0.411 to 0.428

during the sample period. Figure 5 illustrates the increase in the average degree

by the blue line. The degree slowly increased over time. In Figure 6, assuming a

Gaussian kernel function, we illustrate the kernel density of the automation degree

in 1994 and 2020. The horizontal and vertical axes are the degree of automation

and density, respectively. In these two years, the degree of automation varies among

industries. The density has a fat tail with a low degree of automation. The mode

of the distribution was a little over 0.3. However, in several industries, the degree

of automation exceeds 0.8. Therefore, in those industries, automation has increased

much in tasks. From 1994 to 2020, the distribution moves slowly to the right with

increased automation. The slow increase in automation was not surprising because,
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during the sample period, the Japanese economy experienced a prolonged recession,

and the real wage rate did not increase.14

Finally, we consider the reliability of the degree of automation. According to the

annual report of the Ministry of Health, Labor, and Welfare (2023), from 1994 to

2020, the share of capital income increased from 0.373 to 0.428, with an average of

0.41. Therefore, the increase in the average degree of automation across manufactur-

ing industries was similar to the share of capital income. This finding is consistent

with Corollary 1, which shows the equality between the automation degree and the

share of capital income under σ > 1.

Our examination of the relationship between the output level and the degree of

automation confirms the degree’s reliability. Using equation (21), we consider the

degree of automation implied by the output level with a normalization:(
yi,t
yi,0

)
= exp(g(t− t0))

(
1− ai,t
1− bi

)1/ρ

. (33)

Note that C in equation (21) is substituted by neutral technical progress. Rewriting

equation (33), the degree of automation is calculated by the observed output level

and the estimates of g and ρ obtained from the CES estimation:

ai,t|y = 1− (1− bi) exp[−ρg(t− t0)]

(
yi,t
yi,0

)ρ
. (34)

Using Figure 7, we explain the difference in the degree of automation between

equations (32) and (34). Assuming ρ < 0, we illustrate the relationship between

output per labor unit and the automation degree and between the automation degree

and capital per labor unit. On the one hand, given the value of capital per labor

unit, equation (32) represents the degree of automation, which in turn implies the

predicted output per labor unit, ŷi,t in the CES estimation. On the other hand, in

equation (34), the degree of automation corresponds with the observed output per

labor unit. Comparing ai,t with ai,t|y with the same capital per labor unit, we can

see how the automation degree calculated by the capital per labor unit predicts the

output level well. Therefore, the precision of the automation degree in our study

is measured by the sum of squares of the gap in the automation degree between

equations (32) and (34):

d =
1

NT

N∑
i=1

T∑
t=1

(ai,t|y − ai,t)2. (35)

14In Appendix C, estimating the condition for automation adoption, we also examined the degree

of automation.
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This precision depends on the CES estimation and the assumption of capital- and

labor-input efficiency functions.15

Using the entire sample with NT = 1440, we found d = 0.000378, close to

zero. This indicates that the automation degree calculated by the capital per labor

unit, as implied by equation (32), explains the output level well, demonstrating

the accuracy of the CES estimation and the assumption of the input efficiency

function. By choosing the initial and last years of the sample, we check the gap in

the automation degree between equations (32) and (34) in detail. In Figures 8.1 and

8.2, which correspond with 1994 and 2020, respectively, assuming a Gaussian kernel

function, we illustrate the kernel density of the degree of automation. The blue and

red lines show the degree using equations (32) and (34), respectively. In 1994, there

was a small gap in density between these two degrees when the degree exceeded 0.4.

However, in 2020, the degree predicted the output level more precisely.

5.3.2 Degree of automation for industries having significant investment

In this subsection, we examine a subsample of industries with significant invest-

ment. Examining the annual growth rates for capital per labor unit from 1994 to

2020, the average of 54 industries was 2.37%. Regarding industries with substantial

investment, we chose 25 sectors, which exceeded the average of the 54 industries.16

Using this subsample, we simultaneously estimated equations (29)–(31) by a FGLS

estimation.

The estimated result is presented in Table 4. The elasticity of substitution is

σ̂ = (1 + ρ̂)−1 = 1.22. The elasticity estimate was larger than that of all industries.

Therefore, capital and labor were more substitutable in industries with significant

investment. The neutral technical change was significantly positive, similar to the

whole sample.

Table 4. CES estimation result of industries having significant investment

gK = gL ρ g

−0.180 0.0173

(−15.70∗∗) (2.34∗)

Note. The sample size is 675. Numbers in parentheses show the asymptotic t-values.

Cluster-robust standard errors were calculated. ∗ and ∗∗ represent significance at the 5%

and 1% levels, respectively.

15When we examine several functions of input efficiency, equation (35) can be used as the criterion

to choose the optimal function of input efficiency function.
16These 25 industries included pharmaceutical products, machinery, and electronic equipment.
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Using equation (32), we calculated the degree of automation for industries having

significant investment. The descriptive statistics for the degree are presented in

Table 5.

Table 5. Degree of automation for industries having significant investment

mean s.e. min max

0.436 0.152 0.133 0.792

The average degree of automation was 0.436. The degree varies even among

25 industries with significant investment. The average degree of automation across

these industries increased from 0.407 to 0.454 during the sample period. Therefore,

we can observe that automation increased more rapidly over time in these industries

than in other sectors with small investment. Figure 5 illustrates this increase in the

average degree by the red line. Furthermore, during the sample period, the increase

in the average degree across these 25 industries was more significant than that in

the share of capital income. In Figure 9, assuming a Gaussian kernel function, we

illustrate the kernel density of the automation degree using (32) in 1994 and 2020 for

industries with significant investment. In these two years, the degree of automation

varies among industries. The mode of the distribution was approximately 0.4. The

density was approximately symmetric. Compared to the whole sample, from 1994

to 2020, the distribution moved more to the right with increased automation.

Finally, when we examined equation (35) with NT = 675, we found d =

0.000448, which was very small. In Figures 10.1 and 10.2, which correspond with

1994 and 2020, respectively, assuming a Gaussian kernel function, we illustrate the

kernel density of the degree of automation for industries with significant invest-

ment using equations (32) and (34). The blue and red lines represent the degree

of automation using equations (32) and (34), respectively. Compared with 1994, in

2020, the automation degree predicted the output level more precisely, similar to 54

industries.

5.4 Regression of the degree of automation

In this subsection, using the degree of automation, we explore how ICT capital,

robotics stock, and R&D expenditure contribute to automation. We assume the

following relationship between these three and the degree of automation:

ai,t
1− ai,t

= ci

(
vai,t
vai,0

)γa ( vbi,t
vbi,0

)γb ( vci,t
vci,0

)γc
, (36)
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where vai,t, vbi,t, and vci,t are the ratio of ICT capital stock to labor, the ratio of

robotics stock to labor, and the ratio of R&D expenditure to labor, respectively.

Note that ai,t
1−ai,t can take any positive value.

Taking the logarithm of equation (36), we examine the following panel regression

with fixed effects:

ln
ai,t

1− ai,t
= βc,i + γa ln

vai,t
vai,0

+ γb ln
vbi,t
vbi,0

+ γc ln
vci,t
vci,0

+ εi,t, (37)

where εi,t is an error term which follows a distribution with mean zero and variance.

Given the wage rate to interest rate ratio, firms choose the degree of automation

with the inputs of ICT capital stock, robotics stocks, R&D expenditure, and workers.

Namely, in equation (37), the variables in the LHS and RHS may be correlated

with each other. Therefore, we employ IV estimation for panel data. We use the

following lagged variables for the instrumental variables: the ICT capital stock per

labor unit, robotics stock per labor unit, R&D expenditure per labor unit, ICT

capital return, R&D capital return, and the ratio of workers aged over fifty-five to

the total workers. Regarding the ratio of workers over fifty-five to the total workers,

we consider workers more easily replaced by machines than young workers. Workers

over fifty-five are examined as older workers Acemoglu and Restrepo (2022) and

Lerch (2022) presented evidence of the effect of automation on these older workers.

We consider two estimations. We use one-period lagged instrumental variables in

the first estimation and one- and two-period lagged instrumental variables in the

second estimation.

Table 6. Estimation results of equation (37) (ln ai,t
1−ai,t )

variables (i) (ii)

ICT/labor 0.0286 0.0268

(8.59∗∗) (8.39∗∗)

Robots/labor 0.0029 0.0050

(1.35) (2.84∗)

R&D/labor 0.0351 0.041

(5.04∗∗) (6.07∗∗)

Underidentification test 20.10∗∗ 23.06∗

Weak instrument tests 334.12∗∗ 348.68∗∗

Overidentification test 3.17 7.59

Note. Numbers in parentheses show the t-values by the wild bootstrap method. ∗ and

∗∗ represent significance at the 5% and 1% levels, respectively. In column (i), the sample
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size is 1386. The underidentification, weak instrument, and overidentification tests are

distributed as the χ2(4), χ2(3), and χ2(3), respectively. In column (ii), the sample size is

1333. the underidentification, weak instrument, and overidentification tests are distributed

as the χ2(10), χ2(3), and χ2(9), respectively.

Column (i) of Table 6 presents the estimation result using the one- and two-

period lagged instrumental variables. Although the ICT capital stock per labor unit

is significantly positive, the robotics stock per labor unit is insignificant. The ratio

of ICT stock to capital stock, as well as the ratio of robotics to capital stock, has

recently increased. During the sample period, the sectors’ average ICT to capital

stock ratio increased from 2.3 to 5.5%. The average ratio of robotics to capital stock

increased from 0.4 to 0.95%. Even though this ratio of robotics was still small, the

robotics stock was necessary for automation. However, the robotics stock fluctuated

during the sample period in Japan. During the depression, many manufacturing

firms moved production facilities abroad, especially to Asian economies. Therefore,

confirming the strong impact of robotics on automation may be challenging. While

the average ratio of R&D to capital stock among sectors increased from 20.0 to

22.7%, the R&D expenditure per labor unit is significantly positive. The under-

identification test, which was a Cragg-Donald robust CUE-based one, showed no

underidentification. The weak instrument test scrutinized the coefficients of three

endogenous variables, γj = 0 (j = a, b, c), which convincingly rejected these null

hypotheses. The overidentification test was two-step-GMM-based and showed that

the orthogonality conditions were not rejected.

Column (ii) of Table 6 presents the estimation result using the one- and two-

period lagged instrumental variables. Our study reveals a significant positive effect of

robotics on the degree of automation. A sufficient number of instrumental variables

supports this finding. The similarity of the results between columns (i) and (ii)

further reinforces this conclusion, providing a clear and robust understanding of the

impact of ICT and R&D on automation in the manufacturing sector.

6. Concluding remarks

This study proposed a method for measuring the degree of automation. First, by

relating a task-based model to a CES production function, we demonstrate how the

automation degree is involved in the CES production function. Next, examining

panel data of Japanese manufacturing industries from 1994 to 2020, we estimated

a CES production function. We calculated the automation degree assuming Pareto

distributions of capital- and labor-input efficiency functions. The average of the
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automation degree across industries slowly increased from 0.411 to 0.428, similar

to the share of capital income. When examining a subsample of industries with

significant investment, we found a more considerable increase in automation from

0.407 to 0.454. In addition, using the whole sample, we also saw a significant impact

of ICT capital, robotics stock, and R&D expenditure on the automation degree.

Therefore, plausible results were obtained.

Our study raises several issues that warrant further discussion and potential fu-

ture research. The first issue is the assumption of Pareto distributions about capital-

and labor-input efficiency functions. Section 4.2 provides theoretical and practical

justifications for this assumption, which is simple and tractable for measuring the

degree of automation. However, there is still room for improvement, and we should

consider several functions and choose the most appropriate one using a statistical

criterion. Another issue is the difference between skilled and unskilled labor. We

have observed a difference in automation between these two types of labor, suggest-

ing the need to examine this difference by estimating a two-level CES production

function.

Finally, increasing automation affects individuals’ decisions not only about their

work but also about their fertility and education investment for their children

through their beliefs about technology replacing jobs in the future. These beliefs

will change labor demand and supply now and in the future. Therefore, we need

to know more about the degree of automation. We provide a simple and tractable

method for measuring the degree of automation. This method can contribute to

exploring the degree.
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Appendix A. Proof of propositions and theorem

A.1 Proof of Proposition 1

First, we demonstrate that our production function is a neoclassical one. Given

τ > 0, the production function (13) is homogeneous of degree one:

τYt = F (τKt, τLt) = Λ(a(kt))τLt.

The marginal production of capital is

∂Yt
∂Kt

= Θ′(at)a
′(kt)kt + Θ(at) = Λ′(at)a

′(kt) > 0,

because Λ′(at) > 0 and a′(kt) > 0. The marginal product of labor is

∂Yt
∂Lt

= Λ(at)− Λ′(at)a
′(kt)kt = Θ′(at)a

′(kt)
dkt
dLt

Kt > 0,

because Θ′(at) < 0, a′(kt) > 0, and dkt
dLt

< 0.

Using equations (8) and (12), it holds that

d2Λ(a(kt))

dk2
t

= Λ′′(at) [a′(kt)]
2

+ Λ′(at)a
′′(kt) =

[
1

Ω′(at)

]2 [
Λ′′(at)− Λ′(at)

Ω′′(at)

Ω′(at)

]

=

[
1

Ω′(at)

]2
Λ′(at) [−Θ′(at)] Λ(at)

Λ′(at)Θ(at)− Λ(at)Θ′(at)

{
Λ′′(at)

Λ′(at)
− Θ′′(at)

Θ′(at)
− 2

[
Λ′(at)

Λ(at)
− Θ′(at)

Θ(at)

]}
.

Note that

Ω′(at) =
Λ′(at)Θ(at)− Λ(at)Θ

′(at)

Θ2(at)
,

Ω′′(at) =
[Λ′′(at)Θ(at)− Λ(at)Θ

′′(at)]Θ
2(at)− [Λ′(at)Θ(at)− Λ(at)Θ

′(at)]2Θ(at)Θ
′(at)

Θ(at)4
,

Ω′′(at)

Ω′(at)
=

Λ′′(at)Θ(at)− Λ(at)Θ
′′(at)

Λ′(at)Θ(at)− Λ(at)Θ′(at)
− 2

Θ′(at)

Θ(at)
.

The sign of d2Λ(a(kt))
dk2t

relies on

d ln Λ′(at)
Θ′(at)

dat
− 2

d ln Λ(at)
Θ(at)

dat
.

Therefore, under equation (10), it holds that

d2Λ(a(kt))

dk2
t

= Λ′′(at) (a′(kt))
2

+ Λ′(at)a
′′(kt) ≤ 0.

Consequently, we obtain the following:

∂2Yt
∂K2

t

= [Λ′′(at)a
′(kt) + Λ′(at)a

′′(kt)]
1

Lt
≤ 0,
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∂2Yt
∂L2

t

=
[
Λ′′(at)(a

′(kt))
2 + Λ′(at)a

′′(kt)
]

(−kt)
(
−Kt

L2
t

)
≤ 0,

∂2Yt
∂Kt∂Lt

=
[
Λ′′(at)(a

′(kt))
2 + Λ′(at)a

′′(kt)
] (
−Kt

L2
t

)
≥ 0.

Second, we examine a neoclassical production function: Yt = F (Kt, Lt). Owing

to the homogeneous degree one, it holds that

F
(
Kt

Yt
,
Lt
Yt

)
= 1.

The neoclassical production function can be represented by a production function

in a task-based model when it holds that Θ(at) = Kt
Yt

and Λ(at) = Lt
Yt

.

A.2 Proof of Proposition 2

Output per labor unit is

yt = Λ(at) =
[
[Λ(at)]

−ρ
]−1/ρ

.

From equation (14),

yt = τ
1
ρ

{
b

[
Θ(at)

Λ(at)

]ρ
+ (1− b)

}−1/ρ

.

Therefore, using equation (8), the production function in our task-based model is a

CES production function. When ρ = 0, using equation (16), we have

ln Λ(at) = ln τ + b ln
Λ(at)

Θ(at)
.

This implies a Cobb-Douglas production function,

yt = τkbt .

Dividing a CES production function by Yt, we obtain

1 = C

[
b
(
Kt

Yt

)−ρ
+ (1− b)

(
Lt
Yt

)−ρ]− 1
ρ

= C[bΘ(at)
ρ + (1− b)Λ(at)

ρ]−
1
ρ ,

which implies equation (14). We examine when ρ = 0. Taking the logarithm of

equation (14), we have

ln[bΘ(at)
ρ + (1− b)Λ(at)

ρ]

−ρ
= ln τ. (A1)
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The LHS numerator and denominator go to zero when ρ→ 0. Using the L’Hospital’s

rule, the LHS of equation (A1) equation implies equation (16):

lim
ρ→0

bΘ(at)
ρ ln Θ(at) + (1− b)Λ(at) ln Λ(at)

bΘ(at)ρ + (1− b)Λ(at)ρ

= b ln Θ(at) + (1− b) ln Λ(at) = ln τ.

A.3 Proof of Theorem 1

First, we examine when ρ > 0. Equation (19) is represented as

at = Hc(Θ
−1
t ) = 1−

(
hc

Θ−1
t

)ξ
,

which implies

Θ−1
t = hc(1− at)

1
ξ .

Using equation (14), it holds that

bh−ρc (1− at)
ρ
ξ + (1− b)Λρ

t = τ. (A2)

When at → 0, the LHS of equation (A2) is bh−ρc = τ . Note that using the definition

of Λt and Θt in equation (6),

lim
at→0

Λt = lim
at→0

τ
1
ρ

{
(1− b) + b

(
Λt

Θt

)−ρ}− 1
ρ

= lim
at→0

τ
1
ρ

(1− b) + b

[∫ at
0 θ(i)−1di∫ 1
at
λ(i)−1di

]−ρ
− 1
ρ

= τ
1
ρ

(1− b) + b

[
0∫ 1

0 λ(i)−1di

]−ρ
− 1
ρ

= 0.

Therefore, we obtain hc =
(
b
τ

) 1
ρ . From equation (A2),

τ(1− at)
ρ
ξ + (1− b)Λρ

t = τ.

This can be rewritten as follows:

1− at =

(
1− 1− b

τ
Λρ
t

) ξ
ρ

= Gc(Λ
−1
t ).

Because of the assumption about Gc(·) in equation (20), it holds that ξ = ζ = ρ.

Therefore, we obtain Hc(Θ
−1
t ) and Gc(Λ

−1
t ) in equation (21).

Second, we examine when ρ < 0. Equation (19) is represented as

at = Gs(Θt) = 1−
(
gs
Θt

)ζ
,
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which implies

Θt = gsa
− 1
ζ

t .

Using equation (14), it holds that

bgρsa
− ρ
ζ

t + (1− b)Λρ
t = τ. (A3)

When at → 1, the LHS of equation (A3) is bgρs = τ . Note that

lim
at→1

Λt = lim
at→0

τ
1
ρ

(1− b) + b

[∫ at
0 θ(i)−1di∫ 1
at
λ(i)−1di

]−ρ
− 1
ρ

= τ
1
ρ

(1− b) + b

[∫ at
0 θ(i)−1di

0

]−ρ
− 1
ρ

=∞.

Therefore, we obtain gs =
(
b
τ

)− 1
ρ . From equation (A3),

at =

(
1− 1− b

τ
Λρ
t

)− ζ
ρ

= Hs(Λt).

Because of the assumption about Hs(·) in equation (20), it holds that ξ = ζ = −ρ.

Therefore, we obtain Hs(Θt) and Gs(Λt) in equation (21).

A.4 Microfoundation of equation (21)

We examine equation (13). Owing to the homogeneous of degree one, it holds that

F
(
Kt
Yt
, Lt
Yt

)
= τ , which can be rewritten as

F
(
Θ(at)

−1,Λ(at)
−1
)

= τ.

We examine the total differentiation:

F1
dΘ(at)

−1

dat
dat + F2

dΛ(at)
−1

dat
dat = 0,

where F1 = ∂F (·)
∂Θ−1 and F2 = ∂F (·)

∂Λ−1 . It implies that

F1

F2

= −dΛ(at)
−1

dΘ(at)−1
.

Therefore, in equilibrium, the ratio of capital incomes to labor incomes is

RtKt/Yt
wtLt/Yt

=
F1

F2

Θ(at)
−1

Λ(at)−1
= − dΛ(at)

−1/Λ(at)
−1

dΘ(at)−1/Θ(at)−1
,

which implies
(RtKt)/Yt
(wtLt)/Yt

= −d ln Λ(at)
−1

d ln Θ(at)−1
. (A4)
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We examine a CES production function (15). In the following, to have a symmet-

ric explanation of capital- and labor-input efficiency, we redefine Λ−1(at) as follows:

Λ−1(ãt) =
∫ ãt

0
λ−1(j)dj,

where ãt = 1− at. Note that Lt
Yt

= Λ−1(at) = Λ−1(ãt). Using equation (8), the LHS

of equation (A4) is rewritten as

RtKt/Yt
wtLt/Yt

=
b

b̃

(
Kt

Lt

)−ρ
=
b

b̃

(Θ(at)
−1)−ρ

(Λ(ãt)−1)−ρ
,

where b̃ = 1− b. Therefore,

−d ln Λ(ãt)
−1

d ln Θ(at)−1
=

(Λ(ãt)
−1)ρ/b̃

(Θ(at)−1)−ρ/b
. (A5)

We now explore the efficiency of capital and labor inputs, which satisfies equation

(A5). We assume that
d ln Θ(at)

−1

dat
= ξ

(Θ(at)
−1)ρ

b
, (A6)

where ξ > 0. Under equation (14), the assumption (A6) implies

d ln Λ(ãt)
−1

dãt
= ξ

(Λ(ãt)
−1)ρ

b̃
.

We also introduce the parameter ν, which satisfies

Θ(ν) = Λ(ν̃) = τ
1
ρ , (A7)

where

ν = {x|Θ(x) = Λ(x̃), x ∈ [0, 1]},

x̃ = 1− x and ν̃ = 1− ν. Therefore, ν plays a role in normalization.

We examine the following integrals:

∫ Θ(at)−1

Θ(ν)−1

b

ξ

[
Θ(x)−1

]−1−ρ
dΘ(x)−1 =

∫ at

ν
1dx

and ∫ Λ(ãt)−1

Λ(ν̃)−1

b̃

ξ

[
Λ(x)−1

]−1−ρ
dΘ(x̃)−1 =

∫ ãt

ν̃
1dx̃,

where x̃ = 1− x. These imply

[
− b

ρξ
[Θ(x)−1]−ρ

]Θ(at)−1

Θ(ν)−1

= at − ν and

[
− b̃

ρξ
[Λ(x̃)−1]−ρ

]Λ(ãt)−1

Λ(ν̃)−1

= ãt − ν̃.
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Therefore,

b

ρξ
Θ(at)

ρ =
b

ρξ
Θ(ν)ρ − (at − ν) and

b̃

ρξ
Λ(ãt)

ρ =
b̃

ρξ
Λ(ν̃)ρ − (ãt − ν̃).

Using Θ(ν) = Λ(ν̃) = τ
1
ρ , we obtain

Θ(at) = τ
1
ρ

(
1− ρξ

τ

at − ν
b

) 1
ρ

and Λ(ãt) = τ
1
ρ

(
1− ρξ

τ

ãt − ν̃
b̃

) 1
ρ

.

Stipulating ω ≡ ρ ξ
τ
, we assume that

ω =


1 for ρ > 0,

−1 for − 1 ≤ ρ < 0,
(A8)

where We also assume ν = b̃ and b when ρ > 0 and ρ < 0, respectively. Consequently,

when ρ > 0,

Θ(at) = C
(

1− at
b

) 1
ρ

and Λ(at) = C
(

at
1− b

) 1
ρ

.

When ρ < 0,

Θ(at) = C
(
at
b

) 1
ρ

and Λ(at) = C
(

1− at
1− b

) 1
ρ

.

Note that C = τ
1
ρ .

A.5 Proof of Corollary 1

From equations (11), (17), and (21), we obtain (22).

A.6 Proof of Corollary 2

When ρ > 0,

Λ(at)

Θ(at)
=

(
at/(1− b)
(1− at)/b

) 1
ρ

= kt.

When −1 ≤ ρ < 0,

Λ(at)

Θ(at)
=

(
at/b

(1− at)/(1− b)

)− 1
ρ

= kt.

These imply (23).

A.7 Proof of Corollary 3

Using equation (8), the degree of automation is

at =
b(1− b)(kρt − 1)

bρ+ ρ(1− b)kρt
+ b. (A9)
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When ρ→ 0, it holds that

at = b(1− b) ln kt + b. (A10)

Therefore, the automation degree in equations (A9) and (A10) has the continuity

around ρ = 0. When ρ = 0, we also obtain

yt = Λ(at) = c exp

(
at − b
1− b

)
,

which implies yt = ckbt .

A.8 Microfoundation of equations (24) and (25)

In place of equation (A8), we assume that

ω = ρ, (A11)

which implies

Θ(at) = C
(

1− ρat − ν
b

) 1
ρ

and Λ(ãt) = C
(

1− ρãt − ν̃
b̃

) 1
ρ

. (A12)

Assuming that ν = b, we obtain (24) and (25). We can also assume another value

of ν to satisfy 0 ≤ at ≤ 1.

Appendix B. Other proofs

B.1 Proof of equation (10)

Taking the logarithm of equation (9), we have

ln
λ(at)

θ(at)
= 2 ln

Λ(at)

Θ(at)
+ ln

Θ′(at)

[−Λ′(at)]
,

where ζ(at) ≡ λ(at)
θ(at)

. Differentiating this by at, it holds that

d ln λ(at)
θ(at)

dat
= 2

[
Λ′(at)

Λ(at)
− Θ′(at)

Θ(at)

]
+

Θ′′(at)

Θ′(at)
− Λ′′(at)

Λ′(at)
.

Therefore,
d
λ(at)
θ(at)

dat
≥ 0 is equal to equation (10):

Θ′(at)

Θ(at)
− Λ′(at)

Λ(at)
≥ 1

2

[
Θ′′(at)

Θ′(at)
− Λ′′(at)

Λ′(at)

]
.

B.2 Average cost minimization in equation (11)
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We examine

min
at∈[0,1]

Rt

Θ(at)
+

wt
Λ(at)

.

The first-order condition is

Rt

[
−Θ′(at)

Θ(at)2

]
+ wt

[
−Λ′(at)

Λ(at)2

]
= 0.

This is equal to equation (9). Under equation (10), the second-order condition is

Rt

{
−Θ′′(at)Θ(at)

2 − [Θ′(at)]
22Θ(at)

Θ(at)4

}
+ wt

{
−Λ′′(at)Λ(at)

2 − [Λ′(at)]
22Λ(at)

Λ(at)4

}

= wt
Λ′(at)

Λ(at)2

{
2

[
−Θ′(at)

Θ(at)
+

Λ′(at)

Λ(at)

]
+

Θ′′(at)

Θ′(at)
− Λ′′(at)

Λ′(at)

}
≥ 0.

B.3 Proof of equation (17)
∂Yt
∂Kt

= C
(
Yt
C

)1+ρ

bK−ρ−1
t = C−ρbΘ1+ρ

t ,

∂Yt
∂Lt

= C
(
Yt
C

)1+ρ

(1− b)L−ρ−1
t = C−ρ(1− b)Λ1+ρ

t .

B.4 A CES production function with factor-augmenting technical progress

The output per labor unit is

yt = AL,tΛ(at) = AL,t
{

[Λ(at)]
−ρ
}−1/ρ

.

Under equation (14), we have

yt = AL,t

{
b

[
Θ(at)

Λ(at)

]ρ
+ (1− b)

}−1/ρ

.

Note that Λ(at)
Θ(at)

=
AK,t
AL,t

kt. We obtain equation (27).

Appendix C. Degree of automation with the automation condition

C.1 Estimation of the automation condition

This appendix examines the degree of automation with the condition for automation

adoption. The automation condition is

wi,t
Ri,t

=
AL,t
AK,t

λ(ai,t)

θ(ai,t)
.

We assume that λ(ai,t)

θ(ai,t)
is an increasing function of ai,t

1−ai,t . We also assume (36). From

the automation condition, the estimation equation is:

ln
wi,t
Ri,t

= βc,i + βt + βa ln
vai,t
vai,0

+ βb ln
vbi,t
vbi,0

+ βc ln
vci,t
vci,0

+ εi,t, (A13)
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where i = 1, · · · , 54 and t = 1994, 1995, · · · , 2020. εi,t is an error term with a mean

of zero and variance.

Given the wage rate to interest rate ratio, firms choose the degree of automation

with the inputs of ICT capital stock, robotics stocks, and laborers. Namely, in

equation (A13), the RHS includes the endogenous variables, vai,t, vbi,t, and vci,t.

Therefore, to account for the endogeneity of these three variables. We employ IV

estimation for panel data. We use the following instrumental variables: the one-

period lagged variables of the ICT capital stock per labor unit, robotics stock per

labor unit, and R&D expenditure per labor unit. We also use the one-period lagged

variables of the ICT capital return, the R&D capital return, and the ratio of workers

aged over fifty-five to the total workers.

Table A1. Estimation results of equation (A13) (ln wi,t
Ri,t

)

variable (i) (ii)

ICT/labor 0.0934 0.0949

(2.05∗) (2.07∗)

Robots/labor 0.0289 0.0288

(2.24∗) (2.24∗)

R&D/labor −0.0003

(−0.01)

Underidentification test 18.25∗∗ 17.16∗∗

Weak instrument tests 11.67∗∗ 12.34∗∗

Overidentification test 4.23 4.28

Note. The sample size is 1386. Numbers in parentheses show the t-values by the cluster-

robust standard errors. ∗ and ∗∗ represent significance at the 5% and 1% levels, respec-

tively. In column (i), the underidentification and weak instrument tests are distributed as

the χ2(3). The overidentification test is distributed as χ2(2). In column (ii), the underi-

dentification and weak instrument tests are distributed as the χ2(4). The overidentification

test is distributed as χ2(3).

In the first estimation, the estimation results are presented in column named (i)

of Table A1. The ICT capital stock per labor unit is significantly positive. The

robotics stock per labor unit is also significantly positive. The ratio of ICT stock to

capital stock, as well as the ratio of robotics to capital stock, has recently increased.

Although these two capital stocks are still small in the aggregate capital stock,

these two stocks are essential components for the automation condition. The three

31



tests showed that the estimation might be appropriate. The results in the second

estimation are presented in column (ii) of Table A1. Although ICT and robotics

stocks were significantly positive, the impact of R&D expenditure was close to zero.

In the automation condition, the R&D expenditure may not depend on the wage

rate to interest rate ratio.

C.2 Degree of automation implied by the automation condition

Using the estimation result of the automation condition, we calculate the degree of

automation. Under equation (21) with ρ < 0, the condition for automation adoption

is:

wi,t
Ri,t

=
AL,t
AK,t

λ(ai,t)

θ(ai,t)
=
AL,t
AK,t

(
bi

1− bi

) 1
−ρ
(

ai,t
1− ai,t

) 1+ρ
−ρ

. (A14)

Substituting equation (36) into equation (A14), we obtain the following relationships

in equation (A13):

βc,i =
1 + ρ

−ρ
ln ci +

1

−ρ
ln

bi
1− bi

and βj =
1 + ρ

−ρ
γj, j = a, b.

We did not examine R&D expenditure because it was insignificant in equation (A13).

The degree of automation is calculated as follows: ai,t = (1 + Z−1
i,t )−1, where

Zi,t = ai,t
1−ai,t and

Zi,t =

(
bi

1− bi

) −1
1+ρ

exp

(
βc,i
−ρ

1 + ρ

)(
vai,t
vai,0

)βa −ρ1+ρ
(
vbi,t
vbi,0

)βb −ρ1+ρ

. (A15)

The descriptive statistics for the automation degree are presented in Table A2. The

sample size is 1386.

Table A2. Degree of automation implied by the automation condition

mean s.e. min max

0.587 0.183 0.178 0.877

The average degree of automation was 0.59. Compared to the degree calculated

by the aggregate capital stock, the degree was rather large. The average degree

among industries increased little due to a small value of ρ in equation (A15).
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Figure 1.  Decomposition of a production function
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Figure 2. Production function through automation
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Figure 3.2 Degree of automation with a Pareto 
distribution when σ >1

Figure 3.1 Degree of automation with a Pareto 
distribution when σ <1



Figure 4. Relationships between yt and at and 
between at and kt



Figure 5. The average degree of automation across 
industries: 54 and 25 industries  
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Figure 6. Kernel density of the automation degree in 
1994 and 2020
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Figure 7. Gap in the degree of automation 
between equations (32) and (34)



Figure 8.1 Kernel density of  the automation degree in 
1994: Comparing (32) with (34) 

Figure 8.2 Kernel density of  the automation degree in 
2020: Comparing (32) with (34) 
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Figure 9. Kernel density of the automation degree in 
1994 and 2020 for industries having 
significant investment  
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Figure 10.1 Kernel density of  the automation degree in 
1994 for industries having significant 
investment: Comparing (32) with (34) 

Figure 10.2 Kernel density of  the automation degree in 
2020 for industries having significant 
investment: Comparing (32) with (34) 
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