Research News

Jan 9, 2025

  • Engineering

Discovering hidden wrinkles in spacecraft membrane with a single camera

Deformation in thin membrane can be measured using simple method

Single camera photogrammetry



Detecting changes in the surface of spacecraft thin membrane


Credit: Osaka Metropolitan University

 

Exiting Earth’s gravity takes an enormous amount of fuel and power. Due to this, spacecraft strapped to rockets are limited in their carry capacity and every gram must be accounted for. To lighten the load, thin membranes are being researched as alternative materials, but their plastic wrap property causes wrinkling that can affect operational performance. For this reason, there is a need to develop measurement technology that can accurately detect deformations.

Professor Takashi Iwasa at Osaka Metropolitan University’s Graduate School of Engineering led a team in developing a method for measuring the size of wrinkles that have formed across thin membrane using photogrammetry and a single camera. By examining photographs taken of the surface before and after putting stress on the material, the amplitude and wavelength of wrinkles can be detected. Measurement points are printed on the membrane and changes in their position indicate deformation.

“In the past, multiple cameras were required, but in this research, the size of the wrinkles can be easily detected by applying tension-field theory for the measurement result of a single-camera photogrammetry,” stated Professor Iwasa. “We are conducting this research on large thin membrane spacecraft and expect this method to be used where there is limited space for installing cameras.”

The findings were published in Measurement.

Funding

This work was supported by a grant from the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (B) (Grant No. 22H01644) and the Nohmura Foundation for Membrane Structure’s Technology.

Paper information

Journal: Measurement
Title: Monitoring thin membranes for wrinkles using single-camera photogrammetry
DOI: 10.1016/j.measurement.2024.116123
Authors: Takashi Iwasa, Yuuya Ueda, and Katsuya Nakamura
Published: 2 November 2024
URL: https://doi.org/10.1016/j.measurement.2024.116123

Contact

Takashi Iwasa

Graduate School of Engineering
iwasa.takashi[at]omu.ac.jp

*Please change [at] to @.

SDGs

  • SDGs09