CV (S.Kitamura)

Curriculum Vitae

北村先生s

  

  

  

  

  

  

  

  

Name      Shinichi Kitamura

Nationality             Japanese                

 

Affiliation              

Osaka Metropolitan University,

Organization for Research Promotion,

Laboratory of Advanced Food Process Engineering,

ACESYSTEM Laboratory of Food Process Initiative 

             

Position 

Professor

 

Address

Center for Research and Development of Bioresources,

Organization for Research Promotion,

Osaka Metropolitan University,

1-2, Gakuen-cho, Naka-ku, Sakai, 599-8570, Japan

                

Telephone 81-72-254-9638,     E-mail skita@omu.ac.jp

 

Education              

Kyoto Prefectural University, 1971-1975

Kyoto University, Graduate School, 1975-1978

PhD degree conferred from Kyoto University, 1984

 

Major Experience

Visiting researcher, University of California, Irvine1984

Post-doctoral fellow, Yale University, 1984-1986

Lecturer, Kyoto Prefectural University, 1992-2001

Professor, Osaka Prefecture University, 2001-2018

Director, Center for Research and Development of Bioresources, 2007-2014

Director in Applied Life Sciences of Osaka Prefecture University, 2012-2017

KIFFE visiting professor, Norwegian University of Science and Technology, 2018

Professor Emeritus, Osaka Prefecture University, 2018-

Research & Project Professor, Osaka Prefecture University, 2018-2022

Project Professor, Osaka Metropolitan University 2022-

 

External reviewer of Hong Kong Research Grant, 2014-2020

Editorial board member of Carbohydrate Research, 2013-

Editor of Foods 2018-

 

Award    

Young Scientist Award of the Japanese Society of Starch Scientist, 1989

(Title: Conformation and physical properties of amylose in solutions)

The Prize of Japanese Society of Applied Glycoscience, 2010

(Title: Shape and functional properties of polysaccharides)

Machine Promotion Association Award, 2019

(For “Development of a novel superheated steam cooking machine for business use”)

Organic Division Horizon Prize: Robert Robinson Award in Synthetic Organic Chemistry from Royal Society of Chemistry (“for the development of multidimensional click chemistry, a next-generation click-technology that extends perfect bond creation into the three-dimensional world, opening doors to new frontiers in biomedicine, materials science, and beyond.”) with 47 worldwide collaborators including Professor Barry Sharpless, 2021

Technology Development Award of The Japanese Society of Applied Glycoscience

(For “Application of glucronoxylan to nanotechnology.”)

 

Scientific Publication (2022-2017)

 

  1. Lang, W.; Kumagai, Y.;  Habu, S.;  Sadahiro, J.;  Tagami, T.;  Okuyama, M.;  Kitamura, S.;  Sakairi, N.; Kimura, A., Physicochemical functionality of chimeric isomaltomegalosaccharides with α-(1→ 4)-glucosidic segments of various lengths. Carbohydrate Polymers 2022, 291, 119562.
  2. Kabata, D.; Ryoki, A.;  Kitamura, S.; Terao, K., Chain Alignment of a Rigid Ring Polymer in the Lyotropic Liquid Crystal Phase: Cyclic Amylose Tris(n-butylcarbamate) in Tetrahydrofuran and Ethyl Lactate. Macromolecules 2021, 54 (23), 10723-10729.
  3. Kadokawa, H.; Kotaniguchi, M.;  Kereilwe, O.; Kitamura, S., Reduced gonadotroph stimulation by ethanolamine plasmalogens in old bovine brains. Scientific Reports 2021, 11 (1).
  4. Fujita, K. I.; Tomiyama, T.;  Inoi, T.;  Nishiyama, T.;  Sato, E.;  Horibe, H.;  Takahashi, R.;  Kitamura, S.;  Yamaguchi, Y.;  Ogita, A.; Tanaka, T., Effect of pgsE expression on the molecular weight of poly(γ-glutamic acid) in fermentative production. Polymer Journal 2021, 53 (2), 409-414.
  5. Thanh, T. T. T.; Quach, T. T. M.;  Tran, V. T. T.;  Nguyen, T. V.;  Suzuki, S.;  Kitamura, S.; Yuguchi, Y., Structural characteristics and biological activity of different alginate blocks extracted from brown seaweed Turbinaria ornata. Journal of Carbohydrate Chemistry 2021, 40 (1-3), 97-114.
  6. Takemasa, M.; Yuguchi, Y.; Kitamura, S., Size and shape of cycloamylose estimated using column chromatography coupled with small-angle X-ray scattering. Food Hydrocolloids 2020, 108.
  7. Imamura, K.; Matsuura, T.;  Nakagawa, A.;  Kitamura, S.;  Kusunoki, M.;  Takaha, T.; Unno, H., Structural analysis and reaction mechanism of the disproportionating enzyme (D-enzyme) from potato. Protein Science 2020, 29 (10), 2085-2100.
  8. Kitamura, S.; Zheng, Q.;  Woehl, J. L.;  Solania, A.;  Chen, E.;  Dillon, N.;  Hull, M. V.;  Kotaniguchi, M.;  Cappiello, J. R.;  Kitamura, S.;  Nizet, V.;  Sharpless, K. B.; Wolan, D. W., Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. Journal of the American Chemical Society 2020, 142 (25), 10899-10904.
  9. Kimura, S.; Kochi, R.;  Kitamura, S.; Terao, K., A Temperature Responsive Polysaccharide Derivative in Aqueous Solution: Amylose Ethyl Carbamates. ACS Applied Polymer Materials 2020, 2 (6), 2426-2433.
  10. Mori, H.; Ogura, Y.;  Enomoto, K.;  Hara, M.;  Maurstad, G.;  Stokke, B. T.; Kitamura, S., Dense carbon-nanotube coating scaffolds stimulate osteogenic differentiation of mesenchymal stem cells. PLoS ONE 2020, 15 (1).
  11. Kim, D.; Ryoki, A.;  Kabata, D.;  Kitamura, S.; Terao, K., Lyotropic Liquid Crystallinity of Linear and Cyclic Amylose Derivatives: Amylose Tris(n-octadecylcarbamate) in Tetrahydrofuran and 2-Octanone. Macromolecules 2019, 52 (20), 7806-7811.
  12. Takemitsu, H.; Amako, M.;  Sako, Y.;  Kita, K.;  Ozeki, T.;  Inui, H.; Kitamura, S., Reducing the undesirable odor of barley by cooking with superheated steam. Journal of Food Science and Technology 2019, 56 (10), 4732-4741.
  13. Mizushima, D.; Miyazaki, T.;  Shiwa, Y.;  Kimura, K.;  Suzuki, S.;  Fujita, N.;  Yoshikawa, H.;  Kimura, A.;  Kitamura, S.;  Hara, H.; Funane, K., A novel intracellular dextranase derived from Paenibacillus sp. 598K with an ability to degrade cycloisomaltooligosaccharides. Applied Microbiology and Biotechnology 2019, 103 (16), 6581-6592.
  14. Ryoki, A.; Kimura, Y.;  Kitamura, S.;  Maeda, K.; Terao, K., Does local chain conformation affect the chiral recognition ability of an amylose derivative? Comparison between linear and cyclic amylose tris(3,5-dimethylphenylcarbamate). Journal of Chromatography A 2019, 1599, 144-151.
  15. Kameyama, Y.; Kitamura, S.;  Sato, T.; Terao, K., Self-Assembly of Amphiphilic Amylose Derivatives in Aqueous Media. Langmuir : the ACS journal of surfaces and colloids 2019, 35 (20), 6719-6726.
  16. Takagi, H.; Suzuki, S.; Kitamura, S., Selective Adsorption of Essential Oil Compounds by Waxy/Amylose Extender (wx/ae) Double-Mutant Rice Starch Revealed by Gas Chromatography. Starch/Staerke 2019, 71 (1-2).
  17. Yan, B.; Matsushita, S.;  Suzuki, S.;  Kitamura, S.;  Kaiho, T.; Akagi, K., Low-density graphitic films prepared from iodine-doped enzymatically synthesized amylose films as carbonization precursors. Carbohydrate Polymers 2018, 196, 332-338.
  18. Yamamoto, K.; Suzuki, S.;  Kitamura, S.; Yuguchi, Y., Gelation and structural formation of amylose by in situ neutralization as observed by small-angle x-ray scattering. Gels 2018, 4 (3).
  19. Takahashi, R.; Nakaya, M.;  Kotaniguchi, M.;  Shojo, A.; Kitamura, S., Analysis of phosphatidylethanolamine, phosphatidylcholine, and plasmalogen molecular species in food lipids using an improved 2D high-performance liquid chromatography system. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 2018, 1077-1078, 35-43.
  20. Ryoki, A.; Kim, D.;  Kitamura, S.; Terao, K., Linear and cyclic amylose derivatives having brush like side groups in solution: Amylose tris(n-octadecylcarbamate)s. Polymer 2018, 137, 13-21.
  21. Takagi, H.; Kubo, A.;  Inoue, M.;  Nakaya, M.;  Suzuki, S.; Kitamura, S., Binding interaction of porcine pancreatic α-amylase with waxy/amylose extender double-mutant rice starch granules does not determine their susceptibility to hydrolysis. Food Science and Technology Research 2018, 24 (2), 363-368.
  22. Takagi, H.; Suzuki, S.;  Akdogan, G.; Kitamura, S., Surface structure and water adsorption behavior of waxy/amylose extender (wx/ae) double-mutant rice starch. Starch/Staerke 2017, 69 (11-12).
  23. Yamakawa, A.; Suzuki, S.;  Oku, T.;  Enomoto, K.;  Ikeda, M.;  Rodrigue, J.;  Tateiwa, K.;  Terada, Y.;  Yano, H.; Kitamura, S., Nanostructure and physical properties of cellulose nanofiber-carbon nanotube composite films. Carbohydrate Polymers 2017, 171, 129-135.
  24. Gotoh, Y.; Suzuki, S.;  Amako, M.;  Kitamura, S.; Toda, T., Effect of orally administered exopolysaccharides produced by Lactococcus lactis subsp. cremoris FC on a mouse model of dermatitis induced by repeated exposure to 2,4,6-trinitro-1-chlorobenzene. Journal of Functional Foods 2017, 35, 43-50.
  25. Rohrer, J. S.; Kitamura, S., Determination of Carbohydrates Using Liquid Chromatography with Charged Aerosol Detection. In Charged Aerosol Detection for Liquid Chromatography and Related Separation Techniques, 2017; pp 311-325.
  26. Ryoki, A.; Yokobatake, H.;  Hasegawa, H.;  Takenaka, A.;  Ida, D.;  Kitamura, S.; Terao, K., Topology-Dependent Chain Stiffness and Local Helical Structure of Cyclic Amylose Tris(3,5-dimethylphenylcarbamate) in Solution. Macromolecules 2017, 50 (10), 4000-4006.
  27. Jiang, X.; Kitamura, S.;  Sato, T.; Terao, K., Chain Dimensions and Stiffness of Cellulosic and Amylosic Chains in an Ionic Liquid: Cellulose, Amylose, and an Amylose Carbamate in BmimCl. Macromolecules 2017, 50 (10), 3979-3984.
  28. Ohashi, H.; Ohashi, T.;  Kajiura, H.;  Misaki, R.;  Kitamura, S.; Fujiyama, K., Fucosyltransferases produce N-glycans containing core L-galactose. Biochemical and Biophysical Research Communications 2017, 483 (1), 658-663.
  29. Pumaneratkul, C.; Yamasaki, H.;  Yamaguchi, H.;  Kitamura, S.; Sako, Y. In Supercritical CO2 Rankine Cycle System with Low-Temperature Geothermal Heat Pipe, Energy Procedia, 2017; pp 1029-1036.

 

See other papers at https://scholar.google.co.jp/citations?hl=en&user=PrsfUAcAAAAJ

 

Research Field

My research group focuses on carbohydrates and lipids including global analyses of foods components, gene expression profiling of sugar and lipid metabolism, enzymatic syntheses of new functional carbohydrates and lipids, nanotechnology using carbohydrates and lipids, and biological activities of carbohydrates and lipids.