Research Paper
Research Paper (2013~present) (Before 2012 here)
- Mika Takeuchi and Yutaka Amao
"Visible-light driven fumarate synthesis from pyruvate and gaseous CO2 with a hybrid system of photocatalytic NADH regeneration and dual biocatalysts"
RSC Sustainability, 2023 DOI:10.1039/D3SU00194F - Mika Takeuchi and Yutaka Amao
"Effect of water-soluble zinc porphyrin on the catalytic activity of fumarase for L-malate dehydration to fumarate"
New Journal of Chemistry, 2023 DOI:10.1039/D3NJ02900J - Mika Takeuchi and Yutaka Amao
"Structural effect of water-soluble zinc porphyrins in visible-light driven NADH regeneration system catalyzed by rhodium pentamethylcyclopentadienyl complex"
Bulletin of the Chemical society of Japan 2023 DOI:10.1246/bcsj.20230137 - Masanobu Higashi, Takumi Toyodome, Koya Kano and Yutaka Amao
"Photoelectrochemical lactate production from pyruvate via in situ NADH
regeneration over a hybrid system of CdS photoanode and lactate
dehydrogenase"
Electrochimica Acta, 2023 DOI: 10.1016/j.electacta.2023.142590 - Yu Kita, Yutaka Amao
"Visible-light driven 3-hydroxybutyrate production from acetone and low concentrations of CO2 with the system of hybridized photocatalytic NADH regeneration and multi-biocatalysts"
Green Chemistry 2023, 25, 2699–2710 DOI: 10.1039/D3GC00247K - Yu Kita, Yutaka Amao
"Ammonium ion promoted biodegradable plastic precursor D-3-hydroxybutyrate production from bicarbonate and acetone with dual biocatalysts system"
Bulletin of the Chemical society of Japan 2023, 96, 328–330 DOI: 10.1246/bcsj.20230026 - Ryohei Sato and Yutaka Amao
"Studies on the catalytic mechanism of formate dehydrogenase from Candida boidinii using isotope-labelled substrate and co-enzyme"
Catalysis Today 2023, 411-412, 113796 DOI: 10.1016/j.cattod.2022.06.011 - Yu Kita, Yutaka Amao
"Acetoacetate Production from CO2 and Acetone with Acetone Carboxylase from Photosynthetic Bacteria Rhodobacter Capsulatus"
Catalysis Surveys from Asia 2023, 27, 67-74. DOI: 10.1007/s10563-022-09371-x - Mika Takeuchi and Yutaka Amao
"Visible-light driven fumarate production from CO2 and pyruvate by the photocatalytic system with dual biocatalysts"
Sustainable Energy & Fuels 2023, 7, 355–359 DOI: 10.1039/D2SE01533A - Yu Kita, Ritsuko Fujii and Yutaka Amao
"Expression of biocatalysts and their use in monomer synthesis for biodegradable polymer from acetone and CO2"
Sustainable Energy & Fuels 2023, 7, 360–368 DOI: 10.1039/D2SE01150F - Mika Takeuchi and Yutaka Amao
"Phosphate-induced enhancement of fumarate production from a CO2 and pyruvate with the system of malate dehydrogenase and fumarase"
RSC Sustainability 2023, 1, 90–96 DOI: 10.1039/D2SU00031H - Takayuki Katagiri, Yu Kita, Yutaka Amao
"Visible-light driven enantioselective L-lactate synthesis with a combination system of biocatalyst and dye-sensitized NAD+ reduction"
Catalysis Today 2023, 410, 289–294
DOI: 10.1016/j.cattod.2022.04.018 - Akimitsu Miyaji and Yutaka Amao
"Mechanism on formate dehydrogenase catalyzed CO2 reduction with the cation radical of a 2,2’-bipyridinium salt based on the theoretical approach"
Bulletin of the Chemical Society of Japan 2022, 95, 1703–1714
DOI:10.1246/bcsj.20220228 - Yu Kita, Yutaka Amao
"Visible-light driven 3-hydroxybutyrate synthesis from CO2 and acetone with the hybrid system of photocatalytic NADH regeneration and multi-biocatalysts"
Chemical Communications 2022, 58, 11131-11134
DOI: 10.1039/D2CC03660F - Ryohei Sato, Yutaka Amao
"No competitive inhibition of bicarbonate or carbonate for formate dehydrogenase from Candida boidinii -catalyzed CO2 reduction"
New Journal of Chemistry, 2022,46, 15820-15830
DOI: 10.1039/D2NJ00575A - Mika Takeuchi and Yutaka Amao
"Biocatalytic fumarate synthesis from pyruvate and CO2 as a feedstock"
Reaction Chemistry & Engineering 2022, 7, 1931-1935
DOI: 10.1039/D2RE00039C - Yasuo Matsubara, Yumiko Muroga, Masako Kuwata, Yutaka Amao
"Colloidal platinum nanoparticles dispersed by polyvinylpyrrolidone and poly(diallyldimethylammonium chloride) with high catalytic activity for hydrogen production based on formate decomposition"
Sustainable Energy & Fuels, 2022,6, 3717-3721
DOI:10.1039/D2SE00865C - Kaori Murashima, Hideaki Yoneda, Hideaki Sumi, Yutaka Amao "Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator”
New Journal of Chemistry, 2022, 46, 10004-10011
DOI: 10.1039/D2NJ00692H - Takayuki Katagiri, Masako Kuwata, Hideaki Yoneda, Hideaki Sumi, Yutaka Amao
"Bioelectrocatalytic methanol production with alcohol dehydrogenase using methylviologen as an electron mediator"
Energy Advances, 2022, 1, 247–251.
DOI:10.1039/D2YA00054G - Takayuki Katagiri, Yutaka Amao
"Visible-light-induced enzymatic reactions using an NADH regeneration system of water-soluble zinc porphyrin and homogeneous colloidal rhodium nanoparticles”, Sustainable Energy & Fuels, 2022, 6, 2581–2592.
DOI: 10.1039/d2se00454b - Ryohei Sato, Yutaka Amao, “Curious effect of isotope-labelled substrate/co-enzyme on catalytic activity of CO2 reduction by formate dehydrogenase from Candida boidinii”
Bulletin of Chemical Society of Japan, 2022, 95, 556-558.
DOI: 10.1246/bcsj.20220023 - Hiroyuki Takeda, Makoto Shimo, Gai Yasuhara, Ken Kobori, Motoko S. Asano, Yutaka Amao
"Heteroleptic Cu(I) Phenanthroline Complexes Bearing Benzoxazole and Benzothiazole Moieties for Visible Light Absorption"
Chemistry Letters, 2022, 51, 69-72.
DOI:10.1246/cl.210583 - Ryohei Satoa and Yutaka Amao
"Carbonic anhydrase/formate dehydrogenase bienzymatic system for CO2 capture, utilization and storage"
Reaction Chemistry & Engineering, 2022, 7, 181-191.
DOI:10.1039/D1RE00405K - Yu Kita, Yutaka Amao
"pH-Controlled selective synthesis of lactate from pyruvate with a photoredox system of water-soluble zinc porphyrin, an electron mediator and platinum nanoparticles dispersed by polyvinylpyrrolidone"
Sustainable Energy & Fuels, 2021,5, 6004-6013.
DOI:10.1039/D1SE01399H - Yu Kita, Yutaka Amao
"The pH Dependence of Electron Donating Ability of Triethanolamine in a Visible-light Driven H2 Production System of Zinc Porphyrin, Methylviologen and Colloidal Pt Nanoparticles"
Chemistry Letters, 2021, 50, 1979-1982.
DOI:10.1246/cl.210518 - Takayuki Katagiri, Yutaka Amao
"Visible light driven selective NADH regeneration using a system of water-soluble zinc porphyrin and homogeneous polymer-dispersed rhodium nanoparticles"
New Journal of Chemistry, 2021, 45, 15748-15752.
DOI: 10.1039/D1NJ02856A - Takumi Toyodome, Yutaka Amao, Masanobu Higashi
"Photoelectrochemical reduction of CO2 to formate over a hybrid system of CuInS2 photocathode and formate dehydrogenase under visible-light irradiation"
New Journal of Chemistry, 2021, 45, 14803-14807
DOI: 10.1039/D1NJ02481G - Yu Kita, Yutaka Amao
"Visible-light driven redox system of water-soluble zinc porphyrin and platinum nanoparticles for selective reduction of pyruvate to lactate"
New Journal of Chemistry, 2021,45, 11461-11465
DOI: 10.1039/D1NJ02676C - Hiroyasu Tabe, Hiroyuki Oshima, Shusaku Ikeyama, Yutaka Amao, Yusuke Yamada
"Enhanced catalytic stability of acid phosphatase immobilized in the mesospaces of a SiO2-nanoparticles assembly for catalytic hydrolysis of organophosphates"
Molecular Catalysis, 2021, 510, 111669
DOI:10.1016/j.mcat.2021.111669 - Yusuke Minami, Yutaka Amao,
"Cationic poly-l-amino acid-enhanced selective hydrogen production based on formate decomposition with platinum nanoparticles dispersed by polyvinylpyrrolidone"
New Journal of Chemistry, 2021, 45, 9324-9333
DOI: 10.1039/D1NJ01181B
<selected as Front Cover> - Yusuke Minami, Yutaka Amao
"Mechanistic Study of Hydrogen Production Based on the Formate Decomposition with Polyvinylpyrrolidone Dispersed Platinum Nanoparticles"
Journal of the Japan Petroleum Institute, 2021, 64, 203-210.
DOI: 10.1627/jpi.64.203 - Akimitsu Miyaji, Yutaka Amao
"Visible-light driven CO2 reduction to formate with electron mediated nicotinamide-modified viologen in the system of water‐soluble zinc porphyrin and formate dehydrogenase"
ChemNanoMat, 2021, 7, 626-634.
DOI: 10.1002/cnma.202100045 - Akimitsu Miyaj, Yutaka Amao
"Visible-light driven reduction of CO2 to formate by a water-soluble zinc porphyrin and formate dehydrogenase system with electron-mediated amino and carbamoyl group-modified viologen"
New Journal of Chemistry, 2021, 45, 5780-5790
DOI: 10.1039/D1NJ00889G
<selected as Outside Front Cover> - Akimitsu Miyaji, Yutaka Amao
"Theoretical study on CO2 reduction catalyzed by formate dehydrogenase using the cation radical of a bipyridinium salt with an ionic substituent as a co-enzyme"
Physical Chemistry Chemical Physics, 2020, 22, 26987-26994
DOI:10.1039/D0CP05261B - Francesco Secundo, Yutaka Amao
"Visible-light-driven CO2 reduction to formate with a system of water-soluble zinc porphyrin and formate dehydrogenase in ionic liquid/aqueous media"
RSC Advances, 2020,10, 42354-42362
DOI:10.1039/D0RA08594D - Akimitsu Miyaji, Yutaka Amao
"Artificial co-enzyme based on carbamoyl-modified viologen derivative cation radical for formate dehydrogenase in the catalytic CO2 reduction to formate"
New Journal of Chemistry, 2020, 44,18803-18812
DOI:10.1039/D0NJ04375C - Takayuki Katagiri, Yutaka Amao
"Trivalent metal ion promote malic enzyme-catalyzed building carbon-carbon bonds from CO2 and pyruvate"
New Journal of Chemistry, 2020, 44, 17208-17214
DOI: 10.1039/D0NJ03449E
<selected as Front Cover> - Akimitsu Miyaji, Yutaka Amao
“How does methylviologen cation radical supply two electrons to the formate dehydrogenase in the catalytic reduction process of CO2 to formate?”
Physical Chemistry Chemical Physics, 2020, 22, 18595 - 18605
DOI: 10.1039/D0CP02665D - Yusuke Minami, Yumiko Muroga, Yutaka Amao
"Enhancement of catalytic activity for selective hydrogen production from formate with homogeneously poly(vinylpyrrolidone/ cationic poly(L-lysine) dispersed platinum nanoparticles"
New Journal of Chemistry, 2020, 44, 14334-14338
DOI: 10.1039/D0NJ02032J
<selected as Front Cover> - Ryohei Sato, Yutaka Amao
"Can formate dehydrogenase from Candida boidinii catalytically reduce carbon dioxide, bicarbonate, or carbonate to formate?"
New Journal of Chemistry, 2020, 2020, 44, 11922-11926
DOI:10.1039/D0NJ01183E
<selected as Front Cover, HOT Articles> - Yusuke Minami, Yutaka Amao
"Catalytic mechanism for selective hydrogen production based on formate decomposition with polyvinylpyrrolidone-dispersed platinum nanoparticles"
Sustainable Energy & Fuels, 2020, 4, 3458-3466
DOI:10.1039/D0SE00363H - Tomoya Ishibashi, Masanobu Higashi, Shigeru Ikeda, Yutaka Amao
"Photoelectrochemical CO2 Reduction to Formate with the Sacrificial Reagent Free System of Semiconductor Photocatalysts and Formate Dehydrogenase"
ChemCatChem, 2019, 11, 6227–6235
DOI: 10.1002/cctc.201901563
<selected as Cover Feature> - Yosuke Kageshima, Takumi Fujita, Fumiaki Takagi, Tsutomu Minegishi, Katsuya Teshima, Kazunari Domen, Yutaka Amao, Hiromasa Nishikiori
“Electrochemical Evaluation for Multiple Functions of Pt loaded TiO2 Nanoparticles Deposited on a Photocathode”
ChemElectroChem, 2019, 6, 4859–4866
DOI:10.1002/celc.201901453 - Shusaku Ikeyama, Shota Hizume, Tatsuya Takahashi, Shin Ogasawara, Yutaka Amao and Hitoshi Tamiaki
"Visible-light driven hydrogen production using chlorophyll derivatives conjugated a viologen moiety in the presence of platinum nanoparticles"
Photochemical & Photobiological Sciences, 2019, 18, 2673–2681
DOI:10.1039/C9PP00176J
<selected as Inside front cover> - Hidetoshi Emura, Tomoyasu Noji, Masaharu Kondo, Yutaka Amao and Mitsuru Sugisaki
"Anti-Stokes fluorescence from chlorophyll a"
Journal of Physics: Conference S eries, 1220 (2019) 012043
DOI:10.1088/1742-6596/1220/1/012043 - Shintaro Ooi, Sigehito Mitoma, Mamoru Nango, Yutaka Amao and Mitsuru Sugisaki
"Transient grating spectroscopy of β-carotene pumped with spectrally chirped pulses"
Journal of Physics: Conference Series, 1220 (2019) 012045
DOI:10.1088/1742-6596/1220/1/012045 - Yusuke Minami ,Yumiko Muroga ,Tomoko Yoshida , Yutaka Amao
"Selective Hydrogen Production from Formate Using Nanoparticle with Homogeneously Polymer-dispersed Platinum Clusters"
Chemistry Letters, 2019, 48, 8, 775-778.
DOI:10.1246/cl.190311 - Takayuki Katagiri, Yutaka Amao
"Double-Electron Reduced Diphenylviologen as a Coenzyme for Biocatalytic Building Carbon–Carbon Bonds from CO2 as a Carbon Feedstock"
ACS Sustainable Chemistry & Engineering, 2019, 7, 10, 9080-9085
DOI:10.1021/acssuschemeng.9b00081 - Tomoya Ishibashi, Shusaku Ikeyama, Yutaka Amao
"Activation of the catalytic function of formaldehyde dehydrogenase for formate reduction by single-electron reduced methylviologen"
New Journal of Chemistry, 2018, 42, 18508-18512.
DOI:10.1039/C8NJ02211A - Takayuki Katagiri, Kohei Fujita, Shusaku Ikeyama, Yutaka Amao
"Visible light-induced reduction system of diphenylviologen derivative with water-soluble porphyrin for biocatalytic carbon–carbon bond formation from CO2"
Pure and Applied Chemistry, 2018, 90 (11) 1723–1733.
DOI: https://doi.org/10.1515/pac-2018-0402. - Shusaku Ikeyama, Yutaka Amao
"Abnormal co-enzymatic behavior of a one-electron reduced bipyridinium salt with a carbamoyl group on the catalytic activity of CO2 reduction by formate dehydrogenase"
New Journal of Chemistry, 2018, 42, 15556-15560
DOI:10.1039/C8NJ03478H - Tomoya Ishibashi, Shusaku Ikeyama, Manami Ito, Shigeru Ikeda, Yutaka Amao
"Light-driven CO2 reduction to formic acid with the hybrid system of biocatalyst and semiconductor based photocatalyst"
Chemistry Letters, 2018, 47 (12) 1505-1508
DOI: https://doi.org/10.1246/cl.180731 - Shusaku Ikeyama, Ryutaro Abe, Sachina Shiotani, Yutaka Amao
“Effective Artificial Co-enzyme Based on Single-Electron Reduced Form of 2,2’-Bipyridinium Salt Derivatives for Formate Dehydrogenase in the Catalytic Conversion of CO2 to Formic Acid”
Bulletin of Chemical Society of Japan,2018,91,1369-1376.
DOI:10.1246/bcsj.20180013. - Yutaka Amao, Miyuki Fujimura, Makiko Miyazaki, Akemi Tadokoro, Miki Nakamura, Naho Shuto
“A visible-light driven electrochemical biofuel cell with the function of CO2 conversion to formic acid: coupled thylakoid from microalgae and biocatalyst immobilized electrodes”
New Journal of Chemistry, 2018, 42, 9269 - 9280
DOI: 10.1039/C8NJ01118D - Yutaka Amao, Ryota Kataoka
“Methanol production from CO2 with the hybrid system of biocatalyst and organo-photocatalyst”
Catalysis Today 2018, 307, 243–247
DOI:10.1016/j.cattod.2017.12.029 - Shusaku Ikeyama, Yutaka Amao
“The effect of the functional ionic group of the viologen derivative on visible-light driven CO2 reduction to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase”
Photochemical & Photobiological Sciences, 2018, 17, 60–68
DOI: 10.1039/C7PP00277G - Shusaku Ikeyama, Takayuki Katagiri, Yutaka Amao
“The improvement of formic acid production from CO2 with visible-light energy and formate dehydrogenase by the function of the viologen derivative with carbamoylmethyl group as an electron carrier”
Journal of Photochemistry and Photobiology A: Chemistry 2018, 358, 362–367
DOI: 10.1016/j.jphotochem.2017.09.044 - Takayuki Katagiri, Shusaku Ikeyama, Yutaka Amao
” Visible Light-induced Reduction Properties of Diphenylviologen with Water-soluble Porphyrin”
Journal of Photochemistry and Photobiology A: Chemistry 2018, 358, 368–373
DOI: 10.1016/j.jphotochem. 2017.09.045 - Daisuke Kosumi, Yutaka Amao, Richard Cogdell, Hideki Hashimoto
“Singlet and Triplet Excited States Dynamics of Photosynthetic Pigment Chlorophyll a Investigated by Sub-Nanosecond Pump-Probe Spectroscopy”
Journal of Photochemistry and Photobiology A: Chemistry 2018, 358, 374–378
DOI: 10.1016/j.jphotochem.2017.09.046 - Shusaku Ikeyama, Yutaka Amao
“A novel electron carrier molecule based on a viologen derivative for visible light-driven CO2 reduction to formic acid with the system of zinc porphyrin and formate dehydrogenase”
Sustainable Energy & Fuels, 2017, 1, 1730-1733
DOI: 10.1039/C7SE00255F - Yutaka Amao, Shusaku Ikeyama, Takayuki Katagiri, Kohei Fujita
“Development of Dye Molecule-biocatalyst Hybrid System with Visible-light Induced Carbon-carbon Bond formation from CO2 as a Feedstock”
Faraday Discussions, 2017, 198, 73-81
DOI:10.1039/C6FD00212A - Tomoyasu Noji, Tetsuro Jin, Mamoru Nango, Nobuo Kamiya, Yutaka Amao
”CO2 Photoreduction by Formate Dehydrogenase and a Ru-Complex in a Nanoporous Glass Reactor”
ACS Applied Materials& Interfaces, 2017, 9, 3260−3265
DOI:10.1021/acsami.6b12744 - Shusaku Ikeyama, Yutaka Amao
“An artificial co-enzyme based on viologen skeleton for highly efficient CO2 reduction to formic acid with formate dehydrogenase”
ChemCatChem, 2017, 9, 833-838
DOI:10.1002/cctc.201601188 - Shusaku Ikeyama, Yutaka Amao
“Nobel artificial co-enzyme based on the viologen derivative for CO2 reduction biocatalyst formate dehydrogenase”
Chemistry Letters, 2016, 45(11) 1259–1261
https://doi.org/10.1246/cl.160687 - Yutaka Amao, Yukino Teshima, Yuka Sakai
“Photoelectrochemical starch-O2 biofuel cell consisting of a chlorophyll derivative-sensitized TiO2 anode and an enzyme-based cathode”
Research on Chemical Intermediates, 2016, 42, 7761–7770
DOI:https://doi.org/10.1007/s11164-016-2661-1 - Yutaka Amao, Satomi Takahara, Yuka Sakai
“Solar Hydrogen Production from Cellulose Biomass with Enzymatic and Artificial Photosynthesis System”
Research on Chemical Intermediates, 2016, 42, 7753–7759
DOI:https://doi.org/10.1007/s11164-016-2660-2 - Shuichi Ishigure, Masaharu Kondo, Takehisa Dewa, Yutaka Amao, Mamoru Nango
“Light-energy conversion systems for hydrogen production and photocurrent generation using zinc chlorin derivatives”
Research on Chemical Intermediates, 2016, 42, 7743–7752
DOI:https://doi.org/10.1007/s11164-016-2659-8 - Tomoyasu Noji, Takanao Suzuki, Masaharu Kondo, Teturo Jin, Keisuke Kawakami, Tadahisa Mizuno, Hirozo Oka, Masahiko Ikeuchi, Mamoru Nango, Nobuo Kamiya Yutaka Amao and Takehisa Dewa
“Light-induced hydrogen production of Photosystem I-Pt nanoparticle conjugate inside porous glass plates”
Research on Chemical Intermediates, 2016 42 7731–7742
DOI:https://doi.org/10.1007/s11164-016-2658-9 - Yutaka Amao, Jun Miyake
“Biohydrogen and bio/mimetic solar energy conversion”
Research on Chemical Intermediates, 2016, 42 7675–7677
DOI:https://doi.org/10.1007/s11164-016-2662-0 - Shusaku Ikeyama, Ryutaro Abe, Sachina Shiotani, Yutaka Amao
“Novel Artificial Co-enzyme Based on Reduced Form of Diquat for Formate Dehydrogenase in the Catalytic Conversion of CO2 to Formic Acid”
Chemistry Letters, 2016, 45 (8), 907-909
https://doi.org/10.1246/cl.160389 - Yutaka Amao, Ryutaro Abe, Sachina Shiotani
“Effect of chemical structure of bipyridinium salts as electron carrier on the visible-light induced conversion of CO2 to formic acid with the system consisting of water-soluble zinc porphyrin and formate dehydrogenase”
Journal of Photochemistry and Photobiology A: Chemistry, 2015, 313, 149-153
https://doi.org/10.1016/j.jphotochem.2015.06.026 - Yutaka Amao, Naho Shuto, Hideharu Iwakuni
“Ethanol synthesis based on the photoredox system consisting of photosensitizer and dehydrogenases”
Applied Catalysis B: Environmental, 2016, 180, 403–407
https://doi.org/10.1016/j.apcatb.2015.06.051 - Yutaka Amao, Shusaku Ikeyama
“Discovery of the Reduced Form of Methylviologen Activating Formate Dehydrogenase in the Catalytic Conversion of Carbon Dioxide to Formic Acid”
Chemistry Letters, 2015, 44 (9) 1182-1184
https://doi.org/10.1246/cl.150425 - Masaharu Kondo, Shuichi Ishigure, Yuko Maki, Takehisa Dewa, Mamoru Nango, Yutaka Amao
“Photoinduced hydrogen production with photosensitization of Zn chlorophyll analog dimer as a photosynthetic special pair model“
International Journal of Hydrogen Energy, 2015, 40(15) 5313-5318
https://doi.org/10.1016/j.ijhydene.2015.01.158 - Yutaka Amao, Naho Shuto
“Formate dehydrogenase catalyzed CO2 reduction in a chlorin-e6 sensitized photochemical biofuel cell”
Journal of Porphyrins and Phthalocyanines, 2015, 19(1-3) 459–464
https://doi.org/10.1142/S1088424615500406 - Yutaka Amao, Satomi Takahara, Yuka Sakai
"Visible-light induced hydrogen and formic acid production from biomass and carbon dioxide with enzymatic and artificial photosynthesis system"
International Journal of Hydrogen Energy, 2014, 39, 20771-20776
https://doi.org/10.1016/j.ijhydene.2014.06.135 - Masaharu Kondo, Mizuki Amano, Takashi Joke, Shuichi Ishigure, Tomoyasu Noji, Takehisa Dewa, Yutaka Amao and Mamoru Nango
“Immobilization of Photosystem I or II Complexes on Electrodes for Photoenergy-Conversion Devices”
Research on Chemical Intermediates, 2014,40, 3287-3293
DOI:https://doi.org/10.1007/s11164-014-1833-0 - Masaharu Kondo, Mizuki Amano, Fujii Kaoru, Ayumi Okuda , Shuichi Isigure, Takeshisa Dewa, Yutaka Amao, Hideki Hashimoto, Mamoru Nango
“Self-Assembly of the Light-Harvesting Complex of Photosystem II (LHCII) on Alkanethiol-Modified Gold Electrodes”
Research on Chemical Intermediates, 2014, 40, 3277–3285
https://doi.org/10.1007/s11164-014-1822-3 - Yutaka Amao, Naho Shuto
“Formate dehydrogenase-viologen immobilized electrode for CO2 conversion toward the development of artificial photosynthesis system”
Research on Chemical Intermediates, 2014, 40, 3267-3276
DOI:https://doi.org/10.1007/s11164-014-1832-1 - Yutaka Amao, Akemi Tadokoro, Miki Nakamura, Naho Shuto, Ayumi Kuroki
“Chloroplast from Spinach adsorbed nanocrystalline TiO2 electrode for photovoltaic conversion device toward artificial photosynthesis system”
Research on Chemical Intermediates, 2014, 40, 3257-3265
DOI:https://doi.org/10.1007/s11164-014-1831-2 - Yutaka Amao, Ayumi Hamano, Kaori Shimizu
"Development of artificial leaf for solar hydrogen production"
Energy Procedia, 29, 2012, 21-25
https://doi.org/10.1016/j.egypro.2012.09.004 - Masaharu Kameda, Hitoshi Seki, Taro Makoshi, Yutaka Amao, Kazuyuki Nakakita
"A fast-response pressure sensor based on a dye-adsorbed silica nanoparticle film"
Sensors and Actuators B: Chemical, 171-172, 2012, 343-349
https://doi.org/10.1016/j.snb.2012.04.049