Results of my research

Shin'ya Okazaki

A handlebody-knot is a handlebody embedded in the 3-sphere, denoted by H. We defined the Alexander polynomial of a pair of a genus g handlebodyknot H and its meridian system $M = \{m_1, m_2, \ldots, m_g\}$. We introduced a Seifert complex and a C-complex of a handlebody-knot and its meridian system M. Let $\Gamma := l_1 \cup l_2 \cup \cdots \cup l_g$ be a spatial g-bouquet which represents H, and $v := l_1 \cap l_2 \cap \cdots \cap l_g$ the vertex of Γ . A meridian system M of Γ is standard meridian system of Γ if m_i is the meridian of l_i $(1 \le i \le g)$. A spatial g-bouquet Γ is standard spatial g-bouquet for (H, M) if M is the standard meridian system of Γ . Then the following lemma holds.

<u>Lemma 1</u>

For any (H, M), there exists uniquely the standard spatial g-bouquet Γ .

A union of Seifert surface $S^g = S_1 \cup S_2 \cup \cdots \cup S_g$ is a *g*-leafed Seifert complex of (H, M) if S_i is a Seifert surface of l_i $(1 \le i \le g)$ and S_i and S_j intersect transversely except for v $(i \ne j)$. A union of Seifert surface C^g is a *g*-leafed C-complex of (H, M) which has only clasp singularities and no triple points except for v. We introduced a method to calculate the Alexander invariant for a handlebody-knot by a C-complex.

We show that an equivalent class of a C-complex characterizes (H, M). Let C^g and $C^{g'}$ be g-leafed C-complexes. C^g and $C^{g'}$ are equivalence if C^g can be transformed to $C^{g'}$ by a sequence of (I0), (I1), (I2), (I3) and (I4)-moves and $\stackrel{h}{\sim}$, denoted by $C^g \sim_* C^{g'}$.

 $\frac{\text{Theorem 2}}{\{(H,M)\}} \stackrel{\text{[O.]}}{\longleftrightarrow} \{C^g\} / \sim_*$

(I0) ambient isotopy of Seifert complex

