Research Plan

Shintaro Suzuki

Linear response formula for random *β***-transformations**

Let $\beta > 1$ and $p \in (0, 1)$. Let us denote by $[\beta]$ the greatest integer less than β . As stated in summary of research, each random β -transformation K_{β} , defined on $\{0,1\}^{\mathbb{N}} \times [0, \beta]/(\beta-1)$, has a unique invariant probability measure $\hat{\mu}_{\beta, p}$ absolutely continuous with respect to the product measure $m_p \otimes \lambda_\beta$, where m_p is the $(1-p, p)$ -Bernoulli measure on $\{0,1\}^{\mathbb{N}}$ and λ_{β} is the normalized Lebesgue measure on J_{β} . Furthermore, the measure $\hat{\mu}_{\beta,p}$ is of the form $\hat{\mu}_{\beta,p} = m_p \otimes \mu_{\beta,p}$.

In this research, as an application of an explicit formula for the density function of $\mu_{\beta,p}$ and that for the measure-theoretic entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ in the papers [2] and [4], I will investigate the asymptotic behavior of the entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ for parameters (β, p) . In particular, I will study the minimum and maximum values problem for the function $p \mapsto h_{\hat{\mu}_{\beta,p}}(K_{\beta})$, which we can consider since the function is smooth due to the analyticity of the function $p \mapsto f_{\beta,p}$, where $f_{\beta,p}$ is the density function of $\mu_{\beta,p}$. One of our methods to study the behavior of the entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ for a parameter *p* is to find a linear response formula for the function $p \mapsto f_{\beta,p}$, which gives a representation of the *N*-th derivative $\frac{\partial^N f_{\beta,p}}{\partial N}$ $\frac{J \beta p}{\partial p}$, and to apply it to the minimum and maximum values problem. The goal of this study is to to give a linear response formula for the function $p \mapsto f_{\beta,p}$ and to relate it to the the minimum and maximum values problem.

Bernoulli convolutions and *β***-expansions**

Let $1 < \beta \leq 2$ and $p \in (0,1)$. Let us denote by m_p the $(p, 1-p)$ -Bernoulli measure on $\{0,1\}^{\mathbb{N}}$. In the view of *β*-expansions, we define the function g_{β} : $\{0,1\}^{\mathbb{N}} \to \mathbb{R}$ by

$$
g_{\beta}((a_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{a_n}{\beta^n}
$$

for $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$. The Bernoulli convolution $\nu_{\beta,p}$ is defined as the distribution of f_{β} with respect to m_p , *i.e.*, $\nu_{\beta,p} = m_p \circ g_{\beta}^{-1}$. It is known that the Bernoulli convolution is a self-similar measure on R whose support is $[0, \frac{\beta}{\beta}]/(\beta - 1)$ and either absolutely continuous or singular with respect to the Lebesgue measure on R for each (β, p) . In the case of $\beta = 2$, the distribution function of $\nu_{\beta, p}$ is known as the Lebesgue singular function for a parameter *p* and its value on $x \in [0,1]$ is given via the decimal expansion of *x*. In this research, I will investigate Bernoulli convolutions and *β*-expansions in a similar analogy of the case of $\beta = 2$, and relate the algebraic properties of *β* to the properties of the corresponding Bernoulli convolution. Since the distribution function of $\nu_{\beta,p}$ satisfies a similar functional equation which the Lebesgue singular function satisfies, I will manage to extend some results known about the Lebesgue singular function to the Bernoulli convolution. For example, I will attempt to give the value of the distribution function at $x \in [0, \frac{\beta}{\beta}, \frac{\beta - \alpha}{\beta}$ by using β -expansions of $x \in [0, \frac{\beta}{\beta}, \frac{\beta - \alpha}{\beta}$.