Research Plan

Shintaro Suzuki

Linear response formula for random β -transformations

Let $\beta > 1$ and $p \in (0, 1)$. Let us denote by $[\beta]$ the greatest integer less than β . As stated in summary of research, each random β -transformation K_{β} , defined on $\{0, 1\}^{\mathbb{N}} \times [0, [\beta]/(\beta - 1)]$, has a unique invariant probability measure $\hat{\mu}_{\beta,p}$ absolutely continuous with respect to the product measure $m_p \otimes \lambda_{\beta}$, where m_p is the (1 - p, p)-Bernoulli measure on $\{0, 1\}^{\mathbb{N}}$ and λ_{β} is the normalized Lebesgue measure on J_{β} . Furthermore, the measure $\hat{\mu}_{\beta,p}$ is of the form $\hat{\mu}_{\beta,p} = m_p \otimes \mu_{\beta,p}$.

In this research, as an application of an explicit formula for the density function of $\mu_{\beta,p}$ and that for the measure-theoretic entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ in the papers [2] and [4], I will investigate the asymptotic behavior of the entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ for parameters (β, p) . In particular, I will study the minimum and maximum values problem for the function $p \mapsto h_{\hat{\mu}_{\beta,p}}(K_{\beta})$, which we can consider since the function is smooth due to the analyticity of the function $p \mapsto f_{\beta,p}$, where $f_{\beta,p}$ is the density function of $\mu_{\beta,p}$. One of our methods to study the behavior of the entropy $h_{\hat{\mu}_{\beta,p}}(K_{\beta})$ for a parameter p is to find a linear response formula for the function $p \mapsto f_{\beta,p}$, which gives a representation of the N-th derivative $\frac{\partial^N f_{\beta,p}}{\partial^N p}$, and to apply it to the minimum and maximum values problem. The goal of this study is to to give a linear response formula for the function $p \mapsto f_{\beta,p}$ and to relate it to the the minimum and maximum values problem.

Bernoulli convolutions and β -expansions

Let $1 < \beta \leq 2$ and $p \in (0,1)$. Let us denote by m_p the (p, 1-p)-Bernoulli measure on $\{0,1\}^{\mathbb{N}}$. In the view of β -expansions, we define the function g_{β} : $\{0,1\}^{\mathbb{N}} \to \mathbb{R}$ by

$$g_{\beta}((a_n)_{n=1}^{\infty}) = \sum_{n=1}^{\infty} \frac{a_n}{\beta^n}$$

for $(a_n)_{n=1}^{\infty} \in \{0,1\}^{\mathbb{N}}$. The Bernoulli convolution $\nu_{\beta,p}$ is defined as the distribution of f_{β} with respect to m_p , *i.e.*, $\nu_{\beta,p} = m_p \circ g_{\beta}^{-1}$. It is known that the Bernoulli convolution is a self-similar measure on \mathbb{R} whose support is $[0, [\beta]/(\beta - 1)]$ and either absolutely continuous or singular with respect to the Lebesgue measure on \mathbb{R} for each (β, p) . In the case of $\beta = 2$, the distribution function of $\nu_{\beta,p}$ is known as the Lebesgue singular function for a parameter p and its value on $x \in [0, 1]$ is given via the decimal expansion of x. In this research, I will investigate Bernoulli convolutions and β -expansions in a similar analogy of the case of $\beta = 2$, and relate the algebraic properties of β to the properties of the corresponding Bernoulli convolution. Since the distribution function of $\nu_{\beta,p}$ satisfies a similar functional equation which the Lebesgue singular function satisfies, I will manage to extend some results known about the Lebesgue singular function to the Bernoulli convolution. For example, I will attempt to give the value of the distribution function at $x \in [0, [\beta]/(\beta - 1)]$ by using β -expansions of $x \in [0, [\beta]/(\beta - 1)]$.