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Let p(> 0) and q be coprime integers. Let K be a knot and N(K) a tubular neighborhood of K. Let

K(p,q) be the (p, q)-cable knot of K, that is, an essential loop in ∂N(K) with [K(p,q)] = p[l] + q[m] in

H1(∂N(K);Z), where (m, l) is a meridian-longitude pair of K with lk(K ∪ l) = 0 and lk(K ∪m) = +1.

Let I be a knot invariant. If a knot K is equivalent to a knot K ′, then K(p,q) is equivalent to (K ′)(p,q).

Therefore, we have I(K(p,q)) = I((K ′)(p,q)). The map sending a knot K to I(K(p,q)) is also a knot

invariant, which is called the (p, q)-cable version of I and denoted by Ip/q. We focus on the Γ-polynomial,

which is the common zeroth coefficient polynomial of the HOMFLYPT and Kauffman polynomials.

Moreover, we study the (p, q)-cable version of the Γ-polynomial.

• On the braid index of Kanenobu knots

Every knot is presented as a closed braid. The braid index of a knot is the minimum number of strings of

a braid needed for the knot to be presented as a closed braid. The MFW inequality gives a lower bound

of the braid index of a knot by applying the v-span of the HOMFLYPT polynomial. Since Kanenobu

knots k(n) (n = 0, 1, 2, . . . ) have the same HOMFLYPT polynomial, it is not easy to determine the braid

index β(k(n)) of k(n). We give a sharper lower bound of β(k(n)) by applying the (2, q)-cable version of

the Γ-polynomial [7,8,9,12].

• On the arc index of Kanenobu knots (Joint work with Hwa Jeong Lee (KAIST))

Every knot has an arc presentation. The arc index of a knot is the minimum number of pages needed

for the knot to be presented as an arc presentation. The MB inequality gives a lower bound of the

arc index of a knot by applying the a-span of the Kauffman polynomial. Since Kanenobu knots k(n)

(n = 0, 1, 2, . . . ) have the same a-span of the Kauffman polynomials, it is not easy to determine the arc

index α(k(n)) of k(n). We construct “canonical cabling algorithm” which gives sharper upper bounds

of the arc index of cable knots [5] and give a sharper lower bound of α(k(n)) by applying “canonical

cabling algorithm” and the (2, q)-cable version of the Γ-polynomial [4].

• The (p, q)-cable version of the Γ-polynomial for mutant knots

A mutant knot is a possibly different knot obtained from a knot by an operation called mutation. It

is known that many knot invariants are invariant under mutation, for example, the HOMFLYPT and

Kauffman polynomials, and their (2, q)-cable versions are invariant under mutation. On the other hand,

it is known that the (3, q)-cable version of the HOMFLYPT polynomial distinguishes a mutant knot pair.

We show that the (3, q)-cable version of the Γ-polynomial is invariant under mutation [6,11]. (Recently,

Tetsuya Ito showed that the (p, q)-cable version of the Γ-polynomial is invariant under mutation for any

coprime integers p(> 0) and q.)

• A characterization of the Γ-polynomials of knots with clasp number at most two

Every knot bounds a singular disk with only clasp singularities, which is called a clasp disk. The clasp

number of a knot is the minimum number of clasp singularities among all clasp disks of the knot. It

is known that the Conway polynomials of knots with clasp number at most two are characterized. We

characterize the Γ-polynomials of knots with clasp number at most two [3,10].

• Studies on the (2,1)-cable version of the Γ-polynomial

Since it is known that the Γ-polynomial is computable in polynomial time, the (p, q)-cable version of

the Γ-polynomial is also computable in polynomial time. We show that the (2, 1)-cable version of the

Γ-polynomial completely classifies the unoriented knots with up to ten crossings including the chirality

information [1]. Moreover, we show that there exist infinitely many knots with the trivial (2, 1)-cable

version of the Γ-polynomial. Furthermore, we see that the knots have the trivial Γ-polynomial, the trivial

first coefficient HOMFLYPT and Kauffman polynomials [2].


