
My research subject is the many-body problem of the Schrödinger equation, that is, the problem to 

determine states of N particles based on the Schrödinger equation for large natural number N. Here 

I consider large yet finite N, and the problem is different from that of the limit as N tends to infinity. 

Such a problem has been studied from the beginning of quantum mechanics. The characteristic of my 

research is to try to derive results only on the basis of the Schrödinger equation which is a partial 

differential equation by mathematically rigorous arguments and to study methods to estimate solutions 

as quantitative values rather than qualitative behaviors of the solutions and estimate errors of the 

methods quantitatively. I mainly use the technique called functional analysis which defines sets of 

functions based on the Lebesgue integral, regard differential operators as mappings between function 

spaces, and estimate solutions based on properties of the mappings. The differential operator that 

appears in the Schrödinger equation is specially called Hamiltonian. The spectral theory that has 

developed through the analysis of the Hamiltonian is a strong investigative tool for the study of 

the Schrödinger equation. The spectral theory is a natural generalization of the theory of eigenvalue 

problems for matrices. When we generalize matrices to operators on function spaces, the eigenvalues 

of the matrices are generalized to spectrum. Spectra include eigenvalues, but there exist spectra 

called continuous spectra that are not eigenvalues. Elements in function spaces are classified based 

on the spectrum: eigenfunctions correspond to eigenvalues and scattering states correspond to the 

continuous spectra. 

The operator called scattering matrix which maps the past state to the future state plays an important 

role in the study of scattering states. I obtained a new definition of the scattering matrix in many-body 

problems. This is based on a method in which the future state and the past state are considered regarding 

a time-independent stationary solution as a scattered wave. In one-body problems this method is well 

known, and the differential cross section which is the radial distribution of the scattering direction 

is obtained by this method. However, in many body problems the stationary definition is difficult, 

and there had been only the time-dependent definition. Moreover, I also proved that the new stationary 

definition is equivalent to the time-dependent definition and gives the same scattering matrix. This 

result describes the experiments of scattering caused by collisions of molecular beams and is useful 

for the study of molecular reactions. 

The particles treated by the Schrödinger equation are usually electrons and nuclei. Because the mass 

of an electron is much smaller than that of a nucleus, when we choose an appropriate system of units, 

the ratio of the masses appears as a small parameter in the Schrödinger equation. The method to study 

the asymptotic behaviors of solutions as the ratio of masses tends to 0 is called the Born-Oppenheimer 

approximation. I have also analyzed the Schrödinger equation on the basis of the Born-Oppenheimer 

approximation. The advantage of the Born-Oppenheimer approximation is its ability to deal with 

electronic and nuclear motions separately. As for the nuclear motion, I analyzed the motion of an 

atom in constant magnetic fields and dissociation of molecules mathematically. In these studies, the 

methods called semiclassical approximation and WKB approximation justified in mathematically rigorous 

ways that consider asymptotic behaviors of solutions as the parameter in the equations tends to 0 

are used. In particular, the result which gives the precise lifetime of a molecule that will dissociate 

is important for studies of chemical reactions etc. 

On the other hand, as for the electronic state I studied the Hartree-Fock equation which is used to 

obtain electronic states and eigenvalues, and also studied the electronic density. The Hartree-Fock 

equation is the equation which is satisfied by the critical points of the Hartree-Fock functional, 

and it is important for the research of the Hartree-Fock equation to study the distribution of the 

critical values and the critical points of the Hartree-Fock functional. I studied the distribution 

of the critical values of the Hartree-Fock functional and proved that there exist only a finite number 

of critical values below a certain threshold. I also proved that the set of all critical points 

associated with a critical value smaller than the threshold is composed of a finite number of sets 

called compact connected real-analytic spaces. In these studies, I established a method to show the 

Fredholm property of the second derivatives of the functionals, and using this method I proved that 

the sequence of functions obtained by the self-consistent field (SCF) method which is a standard 

numerical analysis method for the Hartree-Fock equation converges. This is the first important result 

that ensures the validity of the SCF method theoretically. 



Electronic density is the function obtained by integrating the squared absolute value of the 

eigenfunction of electrons with respect to all variables except for one, and it indicates the 

expectation value of the number of electrons found in a neighborhood of the point of the variable. 

I proved very generally that the concentration of electrons in a region is prohibited because of the 

repulsive interaction between the electrons by showing that the electronic density obtained from the 

eigenfunction of the Schrödinger equation for electrons in a molecule satisfies an a priori upper 

bound in a bounded region. 

     

 


