Plan of the study (Yosuke Saito)

For complex numbers q, p satisfying |q|<1, |p|<1, we define the theta function $\theta_p(x)$ and the elliptic gamma function $\Gamma_{q,p}(x)$ by

$$\bullet \ \theta_p(x) := \prod_{n \geq 0} (1 - x p^n) \left(1 - x^{-1} p^{n+1} \right), \quad \bullet \ \Gamma_{q,p}(x) := \prod_{m,n \geq 0} \frac{1 - x^{-1} q^{m+1} p^{n+1}}{1 - x q^m p^n} \quad (x \in \mathbb{C} \setminus \{0\}).$$

By setting $D_x = x \frac{\partial}{\partial x}$ (Euler derivative), we define $E_k(x;p) := -D_x^k \log \theta_p(x)$ $(k \in \mathbb{Z}_{>0})$.

Let N be a positive integer, β be a complex number, and p be a complex number satisfying |p|<1. The Hamiltonian of the elliptic Calogero-Moser system $H_N^{\text{CM}}(\beta, p)$ is defined by

•
$$H_N^{\text{CM}}(\beta, p) := \sum_{i=1}^N D_{x_i}^2 - \beta(\beta - 1) \sum_{1 \le i \ne j \le N} E_2(x_i/x_j; p).$$

Then the following fact is known: $\Psi_N(x;\beta,p) := \prod_{1 \le i \ne j \le N} \theta_p(x_i/x_j)^{\beta/2}$ satisfies

•
$$H_N^{\text{CM}}(\beta, p)\Psi_N(x; \beta, p) = \{2N\beta D_p + C_N(\beta, p)\}\Psi_N(x; \beta, p), \cdots (*)$$

where $C_N(\beta, p)$ is a complex number. It is remarkable that the derivative $D_p = p \frac{\partial}{\partial p}$ is in the right hand side of (*). This means that the elliptic Calogero-Moser system has a solution which involves the infinitesimal deformation of the elliptic modulus p.

Let N be a positive integer, q, p be complex numbers satisfying |q|<1, |p|<1, and t be a complex number satisfying $t\in\mathbb{C}\setminus\{0\}$. The Hamiltonian of the elliptic Ruijsenaars system $H_N^{\mathrm{R}}(q,t,p)$ is defined by

•
$$H_N^{\mathrm{R}}(q,t,p) := \sum_{i=1}^N \prod_{j \neq i} \left\{ \frac{\theta_p(tx_i/x_j)\theta_p(qt^{-1}x_i/x_j)}{\theta_p(x_i/x_j)\theta_p(qx_i/x_j)} \right\}^{\frac{1}{2}} T_{q,x_i},$$

where $T_{q,x}$ is the q-shift operator which is defined by $T_{q,x}f(x)=f(qx)$. Then the function $\Psi_N(x;q,t,p):=\prod_{1\leq i\neq j\leq N}\left\{\frac{\Gamma_{q,p}(tx_i/x_j)}{\Gamma_{q,p}(x_i/x_j)}\right\}^{1/2} \text{ satisfies}$

•
$$H_N^{\mathrm{R}}(q,t,p)\Psi_N(x;q,t,p) = t^{\frac{-N+1}{2}} \sum_{i=1}^N \prod_{j \neq i} \frac{\theta_p(tx_i/x_j)}{\theta_p(x_i/x_j)} \Psi_N(x;q,t,p). \cdots (**)$$

It is known that by setting $t=q^{\beta}$ and by taking the limit $q \to 1$ appropriately, the equation (**) degenerates to the equation (*). Thus it is probable that the equation (**) contains a certain difference deformation of the elliptic modulus p. By standing the point of view, the author will study the problem with referring to the q-KZB heat equation introduced by Felder-Varchenko, the non-stationary Ruijsenaars function defined by Shiraishi, the quantum double-elliptic system (DELL system) introduced by Koroteev-Shakirov.