Let $\beta>1$. Frougny and Solomyak introduced the following conditions:

$$
\begin{aligned}
& \text { (} \left.\mathrm{F}_{1}\right) \mathbb{N} \subset \operatorname{Fin}(\beta) \\
& \text { (PF) } \mathbb{Z}_{\geq 0}\left[\beta^{-1}\right] \subset \operatorname{Fin}(\beta) \text { where } \mathbb{Z}_{\geq 0}\left[\beta^{-1}\right]=\left\{\sum_{k=1}^{n} a_{k} \beta^{-k} \mid a_{k} \in \mathbb{Z}_{\geq 0}\right\} \\
& \text { (F) } \mathbb{Z}\left[\beta^{-1}\right]_{\geq 0} \subset \operatorname{Fin}(\beta) \text { where } \mathbb{Z}\left[\beta^{-1}\right]_{\geq 0}=\left\{\sum_{k=1}^{n} a_{k} \beta^{-k} \mid a_{k} \in \mathbb{Z}\right\} \cap[0, \infty)
\end{aligned}
$$

where $\operatorname{Fin}(\beta)$ is the set of nonnegative number x such that x has a finite β-expansion. (F_{1}) includes the other properties and it is known that β is an algebraic integer if $\beta \in\left(\mathrm{F}_{1}\right)$. So $\beta \in(\mathrm{PF})$ is equivalent to $\mathbb{Z}_{\geq 0}\left[\beta^{-1}\right]=$ $\operatorname{Fin}(\beta)$, and $\beta \in(\mathrm{F})$ is also equivalent to $\mathbb{Z}\left[\beta^{-1}\right]_{\geq 0}=\operatorname{Fin}(\beta)$. In addition, if $\beta \in\left(\mathrm{F}_{1}\right)$, then β is also a Pisot number. Summarizing these results, we have the following table.

	Class	Algebraic structure of Fin (β)	Sufficiency for (F)	Sufficiency for (PF)
$\left(\mathrm{F}_{1}\right)$	Pisot	$?$	$?$	$?$
(PF)	Pisot	Closed under addition \& multiplication	$d_{\beta}(1)$ is finite	-
(F)	Pisot	Closed under addition, multiplication \& subtraction	-	-

Here closed under subtraction means that if $x, y \in \operatorname{Fin}(\beta)(x<y)$, then $y-x \in \operatorname{Fin}(\beta)$.
$\left(\mathrm{F}_{1}\right)$ is not yet known. However, I recently found a $\beta \in\left(\mathrm{F}_{1}\right) \backslash(\mathrm{PF})$. So I will work on the following projects related to $\left(F_{1}\right)$.

1. Necessity and Sufficient condition for property (\mathbf{F}_{1})

Let $\beta>1$ be an algebraic integer with minimal polynomial $x^{d}-a_{d-1} x^{d-1}-\cdots-a_{1} x-a_{0}$ and for $\boldsymbol{l}=$ $\left(l_{1}, l_{2}, \cdots, l_{d-1}\right) \in \mathbb{Z}^{d-1}$, define τ by

$$
\begin{gathered}
\tau(\boldsymbol{l}):=\left(l_{2}, \cdots, l_{d-1},-\lfloor\lambda(\boldsymbol{l})\rfloor\right) \\
\text { where } \lambda(\boldsymbol{l})=\boldsymbol{l} \cdot\left(a_{0} \beta^{-1}, a_{1} \beta^{-1}+a_{0} \beta^{-2}, \cdots, a_{d-2} \beta^{-1}+\cdots+a_{0} \beta^{-d+1}\right)
\end{gathered}
$$

where \cdot is inner product. Then τ is the transformation on \mathbb{Z}^{d-1}, corresponding to β-transformation T. In addition, letting $\{\boldsymbol{\lambda}\}(\boldsymbol{l}):=\{\boldsymbol{\lambda}(\boldsymbol{l})\}$, we have the following commutative diagram.

$$
\begin{array}{ccc}
\mathbb{Z}^{d-1} & \xrightarrow{\tau} & \mathbb{Z}^{d-1} \\
\{\lambda\} \downarrow & & \downarrow\{\lambda\} \\
\operatorname{Fin}(\beta) \cap[0,1) & \rightarrow & \operatorname{Fin}(\beta) \cap[0,1)
\end{array}
$$

Thus $\{\lambda\}\left(F_{\beta}\right) \subset \operatorname{Fin}(\beta) \cap[0,1)$ where $F_{\beta}:=\left\{\boldsymbol{l} \in \mathbb{Z}^{d-1} \mid \exists k \geq 0 ; \tau^{k}(\boldsymbol{l})=\mathbf{0}\right\}$. Now define

$$
\begin{gathered}
Q_{\beta}:=\left\{\boldsymbol{l}=\left(l_{1}, \cdots, l_{d-1}\right) \in \mathbb{Z}^{d-1} \mid \exists\left\{\boldsymbol{l}_{n}\right\}_{n=1}^{N} \text { s.t. } \boldsymbol{l}_{N}=\boldsymbol{l}, \boldsymbol{l}_{n+1} \in\left\{\tau\left(\boldsymbol{l}_{n}\right), \tau^{*}\left(\boldsymbol{l}_{n}\right)\right\} \& \boldsymbol{l}_{1}=\boldsymbol{e}\right\} \\
\text { where } \boldsymbol{e}:=(0, \cdots, 0,1) \in \mathbb{Z}^{d-1} \& \tau^{*}(\boldsymbol{l}):=-\tau(-\boldsymbol{l}) .
\end{gathered}
$$

It is known that Q_{β} is a finite set when β is a Pisot number. By my research,

$$
\tau_{\beta}^{-1}\left(P_{\beta}\right) \subset P_{\beta} \&\left\{\sum_{n}^{r} a_{k} \tau^{k}(\boldsymbol{e}) \mid a_{k} \in \mathbb{Z}_{\geq 0}\right\} \cap[-\delta, \delta]^{d-1} \subset F_{\beta}
$$

where $P_{\beta}:=\left\{\boldsymbol{l} \in Q_{\beta} \mid \exists k>0 ; \tau_{\beta}^{k}(\boldsymbol{l})=\boldsymbol{l}\right\} \& \delta:=\max \left\{\left|l_{j}\right| \mid\left(l_{1}, l_{2}, \cdots, l_{d-1}\right) \in P_{\beta}\right\}$
is a sufficient condition for $\left(\mathrm{F}_{1}\right)$. Currently, I expect that above conditions are equivalent to $\beta \in\left(\mathrm{F}_{1}\right) \backslash(\mathrm{PF})$. So I aim to solve this problem as my future work.

2. An algebraic structure of $\operatorname{Fin}(\beta)$ under property $\left(F_{1}\right)$

For $\beta \in\left(\mathrm{F}_{1}\right)$, the algebraic structure of $\operatorname{Fin}(\beta)$ still remains as an unsolved problem. However, I expect that if $\beta \in\left(\mathrm{F}_{1}\right)$, then $\operatorname{Fin}(\beta)$ is closed under multiplication. So I will try this problem as one of my future work. In addition, I plan to consider the equivalent condition when $\operatorname{Fin}(\beta)$ is closed under multiplication.

