Let $\beta > 1$. Froughy and Solomyak introduced the following conditions:

$$(\mathsf{F}_1) \quad \mathbb{N} \subset \mathsf{Fin}(\beta)$$

$$(\mathsf{PF}) \quad \mathbb{Z}_{\geq 0}[\beta^{-1}] \subset \mathsf{Fin}(\beta) \ where \ \mathbb{Z}_{\geq 0}[\beta^{-1}] = \{ \sum_{k=1}^n a_k \beta^{-k} \mid a_k \in \mathbb{Z}_{\geq 0} \}$$

$$(\mathsf{F}) \quad \mathbb{Z}[\beta^{-1}]_{\geq 0} \subset \mathsf{Fin}(\beta) \ where \ \mathbb{Z}[\beta^{-1}]_{\geq 0} = \{ \sum_{k=1}^n a_k \beta^{-k} \mid a_k \in \mathbb{Z} \} \cap [0, \infty)$$

where $\operatorname{Fin}(\beta)$ is the set of nonnegative number x such that x has a finite β -expansion. (F₁) includes the other properties and it is known that β is an algebraic integer if $\beta \in (F_1)$. So $\beta \in (PF)$ is equivalent to $\mathbb{Z}_{\geq 0}[\beta^{-1}] = \operatorname{Fin}(\beta)$, and $\beta \in (F)$ is also equivalent to $\mathbb{Z}[\beta^{-1}]_{\geq 0} = \operatorname{Fin}(\beta)$. In addition, if $\beta \in (F_1)$, then β is also a Pisot number. Summarizing these results, we have the following table.

	Class	Algebraic structure of $Fin(\beta)$	Sufficiency for (F)	Sufficiency for (PF)
(F ₁)	Pisot	?	?	?
(PF)	Pisot	Closed under addition & multiplication	$d_{\beta}(1)$ is finite	_
(F)	Pisot	Closed under addition, multiplication & subtraction	_	_

Here closed under subtraction means that if $x, y \in \text{Fin}(\beta)$ (x < y), then $y - x \in \text{Fin}(\beta)$.

 (F_1) is not yet known. However, I recently found a $\beta \in (F_1) \setminus (PF)$. So I will work on the following projects related to (F_1) .

1. Necessity and Sufficient condition for property (F_1)

Let $\beta>1$ be an algebraic integer with minimal polynomial $x^d-a_{d-1}x^{d-1}-\cdots-a_1x-a_0$ and for $\boldsymbol{l}=(l_1,l_2,\cdots,l_{d-1})\in\mathbb{Z}^{d-1},$ define τ by

$$\tau({\bm l}) \coloneqq (l_2, \cdots, l_{d-1}, -\lfloor \lambda({\bm l}) \rfloor)$$
 where $\lambda({\bm l}) = {\bm l} \cdot (a_0 \beta^{-1}, a_1 \beta^{-1} + a_0 \beta^{-2}, \cdots, a_{d-2} \beta^{-1} + \cdots + a_0 \beta^{-d+1})$

where \cdot is inner product. Then τ is the transformation on \mathbb{Z}^{d-1} , corresponding to β -transformation T. In addition, letting $\{\lambda\}(\boldsymbol{l}) \coloneqq \{\lambda(\boldsymbol{l})\}$, we have the following commutative diagram.

$$\mathbb{Z}^{d-1} \xrightarrow{\tau} \mathbb{Z}^{d-1}
\{\lambda\} \downarrow \qquad \qquad \downarrow \{\lambda\}
\operatorname{Fin}(\beta) \cap [0,1) \xrightarrow{T} \operatorname{Fin}(\beta) \cap [0,1)$$

Thus
$$\{\lambda\}(F_{\beta}) \subset \operatorname{Fin}(\beta) \cap [0,1)$$
 where $F_{\beta} := \{l \in \mathbb{Z}^{d-1} \mid \exists k \geq 0; \ \tau^k(l) = \mathbf{0}\}$. Now define

$$Q_{\beta} := \{ \boldsymbol{l} = (l_1, \cdots, l_{d-1}) \in \mathbb{Z}^{d-1} | \exists \{ \boldsymbol{l}_n \}_{n=1}^N \text{ s.t. } \boldsymbol{l}_N = \boldsymbol{l}, \ \boldsymbol{l}_{n+1} \in \{ \tau(\boldsymbol{l}_n), \tau^*(\boldsymbol{l}_n) \} \ \& \ \boldsymbol{l}_1 = \boldsymbol{e} \}$$

where
$$e := (0, \dots, 0, 1) \in \mathbb{Z}^{d-1} \& \tau^*(\mathbf{l}) := -\tau(-\mathbf{l})$$
.

It is known that Q_{β} is a finite set when β is a Pisot number. By my research,

$$\tau_{\beta}^{-1}(P_{\beta}) \subset P_{\beta} \ \& \ \{ \sum_{n}^{r} a_{k} \tau^{k}(e) \, | \, a_{k} \in \mathbb{Z}_{\geq 0} \} \cap [-\delta, \delta]^{d-1} \subset F_{\beta}$$
where $P_{\beta} := \{ \boldsymbol{l} \in Q_{\beta} \, | \, \exists k > 0; \, \tau_{\beta}^{k}(\boldsymbol{l}) = \boldsymbol{l} \} \ \& \ \delta := \max\{ |l_{j}| \, | \, (l_{1}, l_{2}, \cdots, l_{d-1}) \in P_{\beta} \}$

is a sufficient condition for (F_1) . Currently, I expect that above conditions are equivalent to $\beta \in (F_1) \setminus (PF)$. So I aim to solve this problem as my future work.

2. An algebraic structure of $Fin(\beta)$ under property (F_1)

For $\beta \in (F_1)$, the algebraic structure of $Fin(\beta)$ still remains as an unsolved problem. However, I expect that if $\beta \in (F_1)$, then $Fin(\beta)$ is closed under multiplication. So I will try this problem as one of my future work. In addition, I plan to consider the equivalent condition when $Fin(\beta)$ is closed under multiplication.