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Abstract

In this work, we propose a new invariant for 2D persistence modules called the compressed multiplicity and
show that it generalizes the notions of the dimension vector and the rank invariant. In addition, for a 2D per-
sistence moduleM , we propose an “interval-decomposable approximation” δ∗(M) (in the split Grothendieck
group of the category of persistence modules), which is expressed by a pair of interval-decomposable mod-
ules, that is, its positive and negative parts. We show that M is interval-decomposable if and only if δ∗(M)
is equal to M in the split Grothendieck group. Furthermore, even for modules M not necessarily interval-
decomposable, δ∗(M) preserves the dimension vector and the rank invariant of M . In addition, we provide
an algorithm to compute δ∗(M) (a high-level algorithm in the general case, and a detailed algorithm for the
size 2× n case).
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1. Introduction

Persistent homology [1, 2] is one of the main tools in the rapidly growing field of topological data
analysis. Given a filtration – a one-parameter increasing sequence of spaces – persistent homology captures
the persistence of topological features such as connected components, holes, voids, etc. in the filtration.
Here, the persistence of features is quantified by birth and death parameter values. This can be summarized
compactly by the so-called persistence diagram, which is the multiset of birth-death pairs drawn on the plane
with multiplicity. Algebraically, the persistence diagram can be explained as resulting from a structure
theorem (the Krull-Schmidt theorem (Theorem 2.1) and Gabriel’s Theorem [3]) of persistence modules,
which can also be regarded as representations of certain quivers. See Section 2 for detailed definitions.

One way to deal with multiparametric data is to use multidimensional persistence [4]. However, multidi-
mensional persistence presents theoretical difficulties that hinder the construction of a persistence diagram
as in one-dimensional persistence. In particular, there is no complete discrete invariant that captures all
isomorphism classes of indecomposable persistence modules [4]. Another way of expressing this difficulty is

that the equioriented m×n commutative grid
#–

Gm,n of sufficiently large size (m,n ≥ 2 and mn ≥ 12, see [5,
Theorem 1.3], [6, Theorem 2.5], [7, Theorem 5]) is of wild representation type.
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One way to avoid this problem is to consider only a restricted class of persistence modules. Inspired by 1D
persistence, there has been much interest in the so-called interval-decomposable representations, which are
direct sums of interval representations (Definition 2.6). The work [8] studied this family of representations
and provided a criterion to determine whether or not a given persistence module is interval-decomposable.

It is hoped that most persistence modules coming from “real-world data” contain very few or indeed
no non-interval summands. Let us consider the silica glass example computed in [9], which compares the
atomic configuration of silica glass with its configuration after physical pressurization. The underlying bound
quiver is the commutative ladder CL3(fb), with only two non-interval indecomposable representations given
by dimension vectors ( 1 1 1

1 2 1 ) and ( 1 2 1
0 1 0 ). Then, the numerical result in [9] has ( 1 1 1

1 2 1 ) appearing with only
multiplicity 1 and ( 1 2 1

0 1 0 ) with multiplicity 0, in an example with more than ten thousand indecomposable
summands. While in the slightly different setting of a non-equioriented commutative ladder, this provides
an example where the non-interval part is minute compared to the interval-decomposable part.

On the other hand, the work [10] argues via a geometric example that the non-interval indecomposables
may contain important information that should not be ignored, and that even in relatively simple geometric
point clouds embedded in R3, indecomposable summands with arbitrarily large dimension (as a vector space)
may be present. These large indecomposable summands are clearly not interval.

In this work, we take neither position, but instead propose a method to replace an arbitrary per-
sistence module M ∈ rep

#–

Gm,n by an object δ∗(M) in the split Grothendieck group that is interval-
decomposable. The interval-decomposable approximation δ∗(M) (Definition 5.9) is expressed by a pair
of interval-decomposable modules, that is, its positive part δ∗(M)+ and negative part δ∗(M)− (see (5.5)).
To construct δ∗(M), we first define what we call the compressed multiplicity (Definition 4.12) of M by a
compression operation that picks up information in M restricted to certain essential vertices of intervals.

The intuition behind the compressed multiplicity can be explained as follows. As an initial goal, we
want to compute the multiplicity of an interval I as a direct summand of M . Indeed, the work [8] presents
an algorithm for this computation. However, as this may not be straightforward, in this work we adopt a
different approach. We first compress bothM and I by restricting the underlying domain to certain essential
vertices of I, and compute the multiplicity in the representation category with smaller underlying domain.

In the equioriented commutative ladder [9] case (
#–

G2,n), the compression operation reduces the underlying
bound quiver to a representation-finite bound quiver. This enables easy computation of the compressed
multiplicity using preexisting algorithms.

We show that the compressed multiplicity in fact generalizes the notions of dimension vector (Propo-
sition 4.18) and rank invariant (Proposition 4.16). Furthermore, we exhibit representations that can be
distinguished by their compressed multiplicities but not by their rank invariants. We thus propose the
compressed multiplicity as a new, finer invariant for 2D persistence modules. Moreover, we show that for
interval-decomposable representations, the multiplicity can be recovered from the compressed multiplicity
(Theorem 4.23).

Then, the object δ∗(M) is defined using the Möbius inversion of the compressed multiplicity of M . This
is a generalization of the well-known fact that the multiplicities of interval summands in 1D persistence
modules can be obtained via an application of inclusion-exclusion on the ranks of the linear maps (see for
example [2, 11]).

That is, the persistence diagram is simply the Möbius inversion of the rank invariant. We note that
several works have already exploited this observation to define “generalized persistence diagrams” in general
settings. In Subsection 1.1, we review some of them and contrast them with our work.

In the case that M is interval-decomposable, it follows that δ∗(M) is equal to M viewed as an element
[[M ]] of the split Grothendieck group (Theorem 5.10); that is, δ∗(M)+ ∼=M and δ∗(M)− = 0. Furthermore,
we show that even for modules M not necessarily interval-decomposable, δ∗(M) preserves the dimension
vector and the rank invariant of M (Corollary 5.14, Theorem 5.12). In this sense, we think of δ∗(M) as an
interval-decomposable “approximation” of M .

We organize this work as follows. In Section 2, we review the necessary background from representation
theory and poset theory, and then, in Section 3, we study the poset of interval representations. In Section 4,
we introduce our concept of compressed multiplicities and study its properties. In Section 5, we give the
construction of δ∗(M) from M via Möbius inversion of the compressed multiplicity and give some results
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about its properties. In Section 6, we discuss the computation of our proposed compressed multiplicity and
the interval-decomposable approximation.

1.1. Möbius inversions in persistence

The work of Patel [12] also uses the idea of Möbius inversion in order to define generalized persistence
diagrams, but only in the setting of persistence modules over (R,≤) [12, Definition 2.1]. In this work, our
concept of interval approximation can also seen as an application of Möbius inversion for the more general
setting of the 2D commutative grid. However, we do not consider “generalized persistence diagrams” in the
sense of [12], but rather restrict our attention to the poset of interval subquivers as we are motivated by
their use in practical computation and applications.

On the other hand, the work [13] defines a concept of a “persistence diagram” for nD persistence modules
by using a Möbius inversion in a similar way as we do, and shows a bottleneck stability result. They consider
only (hyper)rectangles instead of intervals as the domain for their multiplicity functions and use a partial
order specifically tailored for proving bottleneck stability.

After an initial version of this work was sent for review, we were made aware by a reviewer of the prior
work of Kim and Memoli [14], which further generalizes Patel’s generalized persistence diagram [12]. In
Table 1, we provide a rough overview of the different settings and a correspondence of some of the results,
which we explain in detail below.

Table 1: Settings and Some Similar Results∗

This work Kim and Memoli [14]

(1) Underlying setting commutative grid
#–

Gm,n poset1 P

(2) Target category vectK category2 C

(3) Domain of invariant Im,n
3 Con(P )4

(4) Invariant proposed compressed multiplicities
d∗
M

: Im,n → N

generalized rank invariant5

rk(M) : Con(P ) → J (C)

(5) Inversion δ∗M : Im,n → Z generalized persistence diagram

dgmP (M) : Con(P ) → Gr(C)

(6) Object
interval-decomposable

approximation

δ∗(M) ∈ Gr(rep
#–

Gm,n)
—6

(7)
from proposed invariant
to true multiplicities

(interval-decomposable)
Theorem 4.23 [14, Theorem 3.14]

(8)
from true multiplicities
to proposed invariant

(interval-decomposable)
Lemma 4.21 [14, Proposition 3.17]

(9) Interpretation as
Möbius inversion

Theorem 5.3 [14, Proposition 3.19]

* This table is not intended to be a comprehensive summary of all results.7

1 Essentially finite connected poset
2 Essentially small, symmetric monoidal category satisfying [14, Convention 2.3]
3 interval (connected and convex) subquivers
4 path-connected subposets
5 See [14, Definition 3.5]. The codomain J (C) is the set of isomorphism classes of C.
6 Not explicitly defined. See however, [14, Remark 3.22].
7 For example, [14] contains results concerning Reeb graphs, which can be viewed as functors
from the “zigzag poset” to the category of finite sets.

While Kim and Memoli [14] consider a very general setting, we restrict our attention toK-representations

of the commutative grid
#–

Gm,n (see rows (1) and (2) of Table 1). Since
#–

Gm,n can be viewed as a poset P ,
which happens to be essentially finite and connected, their setting contains ours. However, the domains of
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the proposed invariants (see row (3) of Table 1) are different. We note that Con(P ), the set of all path-
connected subposets is in general different from the set of all interval subposets, and this is indeed the case
for P =

#–

Gm,n. Our use of intervals is motivated by our ultimate goal of constructing an approximation toM .
In contrast, the set Con(P ) contains subposets which cannot be realized as the support of some persistence

module. For example, viewing
#–

G2,2 as a poset with Hasse diagram (both filled and unfilled circles):

◦ •

• •
,

the subposet C given by the filled-in circles is in Con(P ). However, there is no thin1 indecomposable

persistence module over
#–

G2,2 with support given by C, as a commutativity relation will be violated otherwise.
Furthermore, the proposed invariants (row (4) of Table 1) are different. We first note that both papers

use of the idea of restricting the input persistence module M to define the respective invariants. In [14],
M is restricted to I ∈ Con(P ) to obtain M |I . In the case that I is in fact an interval, this corresponds to
applying what we call the “total compression” functor (Definition 4.11) in a more general setting.

Kim and Memoli [14] then defines the value of their generalized rank invariant at I ∈ Con(P ) to be
“the isomorphism class of the image of the canonical limit-to-colimit map” for MI . Of course, in the case
that the target category C is vectK , the category of finite-dimensional K-vector spaces, this value can be
fully characterized by the dimension of the image. In fact, one version of our invariant, which we call
the “total compressed multiplicity”, coincides with the dimensions of their generalized rank invariant (see
Remark 4.13).

Remark 1.1. However, we emphasize that this total compressed multiplicity is not the main emphasis
of this work. Instead, motivated by computation, we propose the use of the source-sink (ss-)compression
yielding smaller representations (compared to M |I), by further restriction to what we call the essential
vertices of I. We note that these do not coincide with the generalized rank invariant of [14] for fixed I. See
Example 4.14. However, if we allow to change the form of the “input” to generalized rank invariant and
broaden its domain of definition, we indeed recover our source-sink multiplicity (See Remark 4.15).

2. Background

2.1. Representation Theory

We first recall some fundamental terminologies of representations of quivers (see [15] for instance2).
A quiver Q is a quadruple (Q0, Q1, s, t) of sets Q0, Q1 of vertices and arrows, respectively and maps

s, t : Q1 → Q0 that give the source and target vertices, respectively, of the arrows. We denote an arrow α
with source s(α) = x and target t(α) = y by α : x→ y. In this paper, all quivers Q are assumed be finite,
namely, Q0 and Q1 are finite.

Throughout this work, we fix a field K. Let Q be a quiver. A representation V of Q (over K) is a family
(V (x), V (α)) of a vector space V (x) for each vertex x ∈ Q0 and a linear map V (α) : V (x)→ V (y) for each
arrow α : x→ y in Q1.

The dimension vector dim(V ) of a representation V of Q is defined as the tuple

dim(V ) := (dim V (x))x∈Q0
.

It is customary to display the dimension vector by writing each number dim V (x) relative to where the
vertex x is located on an illustration of the quiver Q. The dimension of V is dim V :=

∑

x∈Q0

dim V (x). A

1A persistence module is said to be thin if all of its vector spaces have dimension at most 1. For example, interval persistence
modules are thin.

2Note that there is a difference between our convention and theirs in the order of arrows in paths. Namely, the path αn · · ·α1

in this paper is written as α1 · · ·αn in their book
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representation V of Q is said to be finite-dimensional if dimV < ∞. In this work, by representation we
mean finite-dimensional representation.

Let V and W be representations of Q. A morphism f : V → W from V to W is a family (fx)x∈Q0
of

linear maps fx : V (x)→W (x) such that the following diagram commutes for each arrow α : x→ y:

V (x) W (x)

V (y) W (y).

fx

V (α) W (α)

fy

The composition of morphisms f = (fx)x∈Q0
: V →W and g = (gx)x∈Q0

: U → V is defined in the obvious
way: f ◦ g : U → W is given by (f ◦ g)x = fx ◦ gx. We denote by repQ the category of finite-dimensional
representations of Q together with these morphisms and this composition.

For each vertex i ∈ Q0, we have the path of length 0 at i, which is denoted by ei. For a given positive
integer n, a path µ of length n is a sequence αn · · ·α1 of arrows αi such that t(αi) = s(αi+1) for all
i = 1, · · · , n− 1. The source vertex of µ is s(α1), while its target vertex is t(αn). An m-tuple µ1, · · · , µm of
paths is said to be parallel if they all have the same source vertex and the same target vertex. A relation ρ

in Q is a formal sum ρ =
m
∑

i=1

tiµi of parallel paths µi of length at least 2 with ti ∈ K. A pair (Q,R) of a

quiver Q and a set R of relations is called a bound quiver.
A relation ρ is called a commutativity relation if ρ = µ1 − µ2 for some two parallel paths µ1, µ2. If R is

the set of all possible commutative relations in Q, (Q,R) is called a quiver with full commutativity relations.
Let (Q,R) be a bound quiver and let V be a representation of Q. Put V (µ) := V (αn) ◦ · · · ◦ V (α1)

for any path µ = αn · · ·α1 of length n ≥ 1. Then, V ∈ repQ is said to be a representation of (Q,R) if

V (ρ) :=
m
∑

i=1

tiV (µi) = 0 for any ρ =
m
∑

i=1

tiµi ∈ R. We denote by rep(Q,R) the full subcategory of repQ

consisting of the representations of (Q,R).
The path-category KQ of Q over K is defined as follows. The objects of KQ are the vertices of Q0. For

each pair (i, j) of objects of KQ, the morphisms from i to j are the linear combinations of paths from i to j.
The composition of KQ is defined as the bilinearization of the concatenation of paths. Then for each object
i of KQ, the identity morphism of i is given as the path ei of length 0 at i. Note that the obtained category
KQ naturally becomes a K-category, in the sense that KQ(i, j) are K-vector spaces for all i, j ∈ Q0, and
the composition is K-bilinear. The factor category KQ/〈R〉 is denoted by K(Q,R), where 〈R〉 is the ideal

of the K-categoryKQ generated by R. For instance, this notation is used later for (Q,R) =
#–

Gm,n in Section
4 (see Definition 4.7). For each morphism µ in KQ, the morphism µ + 〈R〉 in KQ/〈R〉 is usually denoted
just by µ, and for morphisms µ and ν in KQ, we regard µ = ν in KQ/〈R〉 if and only if µ− ν ∈ 〈R〉.

A K-linear functor from K(Q,R) to vectK , the category of finite-dimensional K-vector spaces, is called
a (left) K(Q,R)-module, which can be identified with a representation of (Q,R) in an obvious way. From
this fact, representations of (Q,R) are sometimes called modules (over K(Q,R)).

A fundamental result in representation theory is the Krull-Schmidt theorem (see [16, Theorem 12.9] or
[15, I.4.10 Unique decomposition theorem]).

Theorem 2.1 (Krull-Schmidt). Let L be a complete set of representatives of isomorphism classes of inde-
composable representations of a bound quiver (Q,R). For each representation M of (Q,R), there exists a
unique function dM : L → Z≥0 such that

M ∼=
⊕

L∈L

LdM(L).

The function dM is called the multiplicity function of M , and the value dM (L) the multiplicity of the
indecomposable L in M .

As an example, let us consider the equioriented An-type quiver:

#–

An : 1 2 · · · n .
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It is known that in this case, L is the set {I[b, d]}1≤b≤d≤n of the so-called interval representations I[b, d] of
#–

An [3]. The interval representation I[b, d] is

I[b, d] : 0 −→ · · · −→ 0 −→
b-th

K −→ K −→ · · · −→
d-th

K −→ 0 −→ · · · −→ 0,

which has the vector space I[b, d](i) = K at the vertices i with b ≤ i ≤ d, and 0 elsewhere, and where
the maps between the neighboring vector spaces K are identity maps and zero elsewhere. In the context of
persistent homology [1, 2], a persistence module can be viewed as a representation of

#–

An, and the multiplicity
function dM encodes the information of the persistence diagram.

The underlying bound quiver we study in this work is the equioriented commutative grid
#–

Gm,n defined

below. Then, we consider 2D persistence modules as representations of
#–

Gm,n.

Definition 2.2 (Equioriented commutative grid). Let 0 < m,n ∈ Z. The bound quiver
#–

Gm,n, is defined to
be the 2D grid of size m× n with all horizontal arrows in the same direction and all vertical arrows in the
same direction, together with full commutativity relations. It is also called the equioriented commutative
grid of size m× n.

For example, the equioriented 2× 4 commutative grid
#–

G2,4 is the quiver

• • • •

• • • •

with full commutativity relations.
As mentioned in the introduction, for large enough size,

#–

Gm,n is of wild representation type. That is, L
can be very complicated. Instead, we consider a restricted class of representations, the interval-decomposable
representations. Following the notation in [8], we first recall the definition of interval subquivers and interval
representations for general bound quivers.

Definition 2.3 (Interval subquiver).

(1) Let Q be a quiver. A full subquiver Q′ of Q is said to be convex in Q if and only if for all vertices x,
y ∈ Q′

0 and all vertices z ∈ Q0, the existence of paths x to z and z to y in Q imply that z ∈ Q′
0.

(2) A quiver Q is said to be connected if it is connected as an “undirected graph”,

(3) A subquiver Q′ of Q is said to be an interval subquiver of Q if Q′ is convex (in Q) and connected.

For any two full subquivers Q′, Q′′ of Q, the intersection Q′ ∩Q′′ (respectively, the union Q′ ∪Q′′) of Q′

and Q′′ is defined as the full subquiver of Q having the vertex set Q′
0 ∩Q

′′
0 (respectively, Q′

0 ∪Q
′′
0).

Suppose that Q′ and Q′′ are interval subquivers of Q with Q′
0 ∩Q

′′
0 6= ∅. Note that Q′ ∩Q′′ may not be

connected, in general, and so may not be an interval. However, the following statement can be checked.

Lemma 2.4. Let Q′ and Q′′ be interval subquivers of Q. Then, Q′ ∩ Q′′ is a disjoint union of interval
subquivers of Q.

Proof. To see this, we write Q′ ∩Q′′ as a disjoint union of its connected components Ci for i = 1, · · · , n and
show that each connected component Ci is actually an interval subquiver of Q. It suffices to check that Ci

is convex.
For that, let x, y be vertices of Ci and z a vertex of Q such that there exist paths x to z and z to y in

Q. We show that z is a vertex of Ci.
For each path z = z0 → z1 → · · · → zℓ = y in Q, since Q′ and Q′′ are convex and x, y are both

in Q′ and Q′′, each zk is a vertex of Q′ and Q′′. Thus, all zk are vertices in Q′ ∩ Q′′ and the path
z = z0 → z1 → · · · → zℓ = y is in fact a path in Q′ ∩ Q′′. Since zℓ = y ∈ Ci and Ci is a connected
component, we must have z0 = z ∈ Ci. Thus Ci is convex.
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On the other hand, Q′ ∪ Q′′ is not an interval subquiver in general, even if Q′ and Q′′ are interval
subquivers of Q with Q′

0 ∩ Q
′′
0 6= ∅. While connectedness is guaranteed since Q′

0 ∩ Q
′′
0 6= ∅, convexity may

fail to hold.

Definition 2.5. For 0 < m,n ∈ Z, define Im,n to be the set of all nonempty interval subquivers of
#–

Gm,n.

It is known that the interval subquivers of
#–

Gm,n take on a distinctive “staircase” shape. See [8]. Below

is an example of an interval subquiver of
#–

G4,6.

◦ • • • ◦ ◦

◦ ◦ • • ◦ ◦

◦ ◦ • • • ◦

◦ ◦ ◦ ◦ • •

(2.1)

Recall that for M a representation of a bound quiver (Q,R), the support suppM of M is the full
subquiver of Q with vertices {i ∈ Q |M(i) 6= 0}. Finally, we are ready to recall the following generalization

of interval representations of
#–

An.

Definition 2.6 (Interval representations). A representation V ∈ rep(Q,R) is said to be an interval repre-
sentation if

• dimV (x) ≤ 1 for each vertex x of Q,

• its support supp(V ) is an interval of Q, and

• for all arrows α ∈ supp(V ), V (α) is an identity map.

Note that by this definition, an interval representation V is determined (up to isomorphism) by its
support suppV . If I is an interval subquiver, the corresponding interval representation with support equal
to I is denoted by VI . For example, the interval subquiver I of

#–

G4,6 given by the quiver (2.1) is the support
of VI with dimension vector (3.2).

A representation M ∈ rep(Q,R) is said to be interval-decomposable if it can be expressed as a direct
sum of interval representations. Equivalently, by Theorem 2.1, M is interval-decomposable if and only if
dM (L) = 0 for all non-interval indecomposables L.

2.2. Posets and Lattices

In this subsection, we recall some basic definitions from poset and lattice theory. See [17] for more details.
Recall that a poset (partially ordered set) (P,≤) is a set P with partial order ≤. A poset P is said to

be finite if P is finite as a set. Throughout this work, all posets are assumed to be finite.

Definition 2.7. Let P be a poset and x, y ∈ P . The segment [x, y] between x and y is defined to be

[x, y] := {z ∈ P | x ≤ z ≤ y}

and define Seg(P ) to be the set of all segments of P . The open segment (x, y) between x and y is defined to
be

(x, y) := {z ∈ P | x < z < y}.

It is clear that each segment of P (respectively each open segment) of P forms a subposet of P . We say
that y covers x if x < y and (x, y) = ∅. The set of the elements covering x is denoted by Cov(x).

We note that a segment [x, y] is also called an interval in the literature, but we do not use this term to
avoid confusion.

Definition 2.8. Let P be a poset and S a subset of P .
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(1) An element u ∈ P is said to be an upper bound of S if s ≤ u for each s ∈ S. The set of upper bounds of
S is denoted by U(S). For a singleton S = {s}, we abuse the notation and write U(s) for U({s}).

(2) An element x ∈ U(S) is said to be the join of S if x ≤ u for each u ∈ U(S). Note that the join of S is
unique if it exists, and is denoted by

∨

S. When S = {a, b}, then the join of S is denoted by a ∨ b.

Dually,

(3) An element l ∈ P is said to be an lower bound of S if l ≤ s for each s ∈ S. The set of lower bounds of
S is denoted by L(S). For a singleton S = {s}, we abuse the notation and write L(s) for L({s}).

(4) An element x ∈ L(S) is said to be the meet of S if l ≤ x for each l ∈ L(S). Note that the meet of S is
unique if it exists, and is denoted by

∧

S. When S = {a, b}, then the meet of S is denoted by a ∧ b.

Definition 2.9. Let P be a poset.

(1) P is called a join-semilattice (respectively, meet-semilattice) if each two-element subset {a, b} ⊆ P has
a join (respectively, meet).

(2) P is called a lattice if P is a join-semilattice and a meet-semilattice.

(3) When P is a lattice, P is said to be distributive if for all x, y, z ∈ P ,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

or equivalently, if for all x, y, z ∈ P ,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

For a join-semilattice P and a, b, c ∈ P , note that (a ∨ b) ∨ c =
∨

{a, b, c} = a ∨ (b ∨ c). Thus the
binary operation ∨ satisfies associativity, and hence generalized associativity. Therefore in general, if S =
{x1, . . . , xn} ⊂ P , then

x1 ∨ x2 ∨ · · · ∨ xn

is well-defined and equal to
∨

S. A similar remark holds for
∧

S in meet-semilattices.
The following fact is well-known and can be checked easily.

Proposition 2.10. If P is a finite join-semilattice (meet-semilattice) with a lower bound (upper bound ) of
P , then P is a lattice.

We will see later that the poset of intervals does not form a lattice globally, so we provide the following
“local” definitions.

Definition 2.11.

(1) A poset P is called a local lattice if for any x, y ∈ P , the segment [x, y] is a lattice.

(2) A local lattice P is said to be locally distributive if for any x, y ∈ P , the segment [x, y] is a distributive
lattice.

2.3. Möbius Functions

In this subsection, we review some basic facts about Möbius functions. We refer the reader again to [17]
for more details.

Let F be a field of characteristic zero, and P a poset. Recall that Seg(P ) is the set of segments of P .
The incidence algebra of P over F is the set of functions from Seg(P ) to F , together with a “pointwise” +
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operation, and convolution ∗ as the multiplication operation. More precisely, for f, g : Seg(P ) → F , define
f ∗ g : Seg(P )→ F by

(f ∗ g)([x, y]) :=
∑

x≤z≤y

f([x, z])g([z, y]).

It can be shown that the incidence algebra of P over F is indeed a F -algebra, which we denote by I(P ). Its
identity element is the delta function δ : Seg(P )→ F with

δ([x, y]) =

{

1F if x = y,
0 otherwise.

Definition 2.12 (Zeta and Möbius functions). The zeta function ζ : Seg(P ) → F is the function with
constant value 1F . Then, it can be shown that ζ is an invertible element of I(P ), with inverse called the
Möbius function µ.

Now, let FP be the set of all functions P → F . Note that FP has natural F -vector space structure by
pointwise addition and scalar multiplication of functions. The incidence algebra I(P ) acts on FP from the
left by the following. For each f ∈ FP , φ ∈ I(P ), define φf ∈ FP by

(φf)(x) :=
∑

x≤y

φ([x, y])f(y).

It can be checked that FP is a left I(P ) module with this left action. For example, the computation

(ψ(φf))(x) =
∑

x≤y

ψ([x, y])(φf)(y)

=
∑

x≤y

ψ([x, y])
∑

y≤z

φ([y, z])f(z)

=
∑

x≤z

∑

x≤y≤z

ψ([x, y])φ([y, z])f(z)

=
∑

x≤z

(ψ ∗ φ)([x, z])f(z)

= [(ψ ∗ φ)f ](x)

shows that this action is compatible with the multiplication (convolution) in I(P ).

3. Local lattice of intervals

In this section, we study the set of isomorphism classes of interval representations for a fixed equioriented
commutative 2D grid

#–

Gm,n. Note that an interval representation is uniquely defined (up to isomorphism)
by its support, and thus it suffices to consider the set of interval subquivers Im,n.

First, we start with the following easy observation.

Proposition 3.1. With the order ≤ on Im,n defined by I ≤ I ′ ⇐⇒ I ⊆ I ′, (Im,n,≤) is a poset.

Proof. This is immediate from the definitions.

By Proposition 4.1 in [8], each element I of Im,n has a “staircase” form, which was denoted by:

I =

t
⊔

i=s

[bi, di]i

for some integers 1 ≤ s ≤ t ≤ m and some integers 1 ≤ bi ≤ di ≤ n for each s ≤ i ≤ t such that

bi+1 ≤ bi ≤ di+1 ≤ di for all i ∈ {s, . . . , t− 1}. (3.1)
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In this notation, each [bi, di]i is the “slice” of the staircase at height i. For example, the staircase

(

0 1 1 1 0 0
0 0 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

)

(3.2)

of
#–

G4,6 corresponds to [5, 6]1 ⊔ [3, 5]2 ⊔ [3, 4]3 ⊔ [2, 4]4. In general, the interval I =
⊔t

i=s[bi, di]i means that
I has vertices

I0 = {(i, x) | s ≤ i ≤ t, bi ≤ x ≤ di}.

Proposition 3.2. Let I ∈ Im,n and J ∈ Cov(I). Then, the number of vertices of J is one more than that
of I.

Sketch of Proof. Suppose that I ( J . We show that there exists a point p ∈ J0 \ I0 that can be added to
I to obtain an interval I ′ with I ( I ′ ⊆ J . The result immediately follows from this, since if J ∈ Cov(I),
then J = I ′ by definition. That is, J has one more vertex compared to I.

Let

I =
t
⊔

i=s

[bi, di]i and J =
v
⊔

j=u

[cj , ej ]j .

Since I ( J , it follows that u ≤ s ≤ t ≤ v and ck ≤ bk ≤ dk ≤ ek for each k ∈ [s, t], in addition to the
requirements for I and J to be intervals. We give below the point p ∈ J0 \ I0 that can be added to I to
obtain the interval I ′.

• In case that 1 ≤ u < s,

• if cs−1 ≤ ds, then choose the point p = (s− 1, ds);

• otherwise, if cs−1 > ds, choose p = (s, ds + 1).

• The case t < v ≤ m is dual to the previous case.

• If bt ≤ et+1 choose p = (t+ 1, bt);

• otherwise, p = (t, bt − 1) works.

• Otherwise, we have u = s ≤ t = v. In this case, we define

L = {k ∈ [s, t] | (k, bk − 1) ∈ J0} and R = {k ∈ [s, t] | (k, dk + 1) ∈ J0}.

These are the row indices where a point to the left (and right, respectively) of I is in J . Since I 6= J ,
it is clear that at least one of L and R is nonempty.

• If L 6= ∅, choose the point p = (maxL, bmaxL − 1).

• If R 6= ∅, choose the point p = (minR, dminR + 1).

For each of the cases above (which exhausts all possibilities), a routine check using the definitions shows
that the chosen point p can be added to I to obtain an interval I ′. This completes the proof.

The above result implies that Im,n is a graded poset with rank function ρ : Im,n → N given by ρ(I) = #I0,
the number of vertices of I.

Example 3.3. For any n ∈ N and any interval I = [b1, d1]1 ⊔ [b2, d2]2 ∈ I2,n, #Cov(I) ≤ 4. Indeed, any
cover of I takes on one of the following forms:

[b1 − 1, d1]1 ⊔ [b2, d2]2,
[b1, d1 + 1]1 ⊔ [b2, d2]2,
[b1, d1]1 ⊔ [b2 − 1, d2]2, or
[b1, d1]1 ⊔ [b2, d2 + 1]2.
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In general, we have the following, which follows immediately from Proposition 3.2 and the characteriza-
tion of interval subquivers of

#–

Gm.n as staircases.

Proposition 3.4. Let I ∈ Im,n. Then, Cov(I) = C ∩ Im,n where C is the set of subquivers of
#–

Gm,n obtained
from I by one of the following operations (if the result is a subquiver):

(1) extending one row of I by one adjacent vertex left of the row,

(2) extending one row of I by one adjacent vertex right of the row,

(3) adding one vertex above the upper-left vertex of I, or

(4) adding one vertex below the lower-right vertex of I.

Let us express the above using the notation of

I =

t
⊔

i=s

[bi, di]i

for some integers 1 ≤ s ≤ t ≤ m and some integers 1 ≤ bi ≤ di ≤ n for each s ≤ i ≤ t such that
bi+1 ≤ bi ≤ di+1 ≤ di for any i ∈ {s, . . . , t − 1}. Then Cov(I) is the set of valid interval subquivers in the
following set of candidates C:

• for j ∈ {s, . . . , t},
t
⊔

i=s

[b′i, di]i, where b
′
i =

{

bi − 1 if i = j,

bi otherwise,

• for j ∈ {s, . . . , t},
t
⊔

i=s

[bi, d
′
i]i, where d

′
i =

{

di + 1 if i = j,

di otherwise,

•
t
⊔

i=s

[bi, di]i ⊔ [bt, bt]t+1,

• [ds, ds]s−1 ⊔
t
⊔

i=s

[bi, di]i.

Note that some candidates may exceed the bounds of the commutative grid. Those candidates are immedi-
ately disqualified.

Example 3.5. We provide an example using the interval I (filled-in circles):

◦ ◦ ◦ ◦ ◦ ◦

◦ • • • ◦ ◦

◦ ◦ • • ◦ ◦

◦ ◦ • • • ◦

◦ ◦ ◦ ◦ • •

in the commutative grid
#–

G5,6. We illustrate the vertices in Proposition 3.4.

• Vertices v with I0 ∪ {v} = C0 for some C ∈ Cov I are denoted with green check marks. These give all
the cover elements C.
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• The remaining vertices v do not form cover elements. That is, there is no interval C with C0 = I0∪{v}.
These are denoted with red crosses. Note that two of them go out of bounds.

◦ ✓ ◦ ◦ ◦ ◦

✓ • • • ✗ ◦

◦ ✓ • • ✓ ◦

◦ ✗ • • • ✓

◦ ◦ ◦ ✓ • • ✗

✗

Repeating the point above, each C ∈ Cov(I) is the unique interval subquiver C with I0 ∪{v} = C0 for some
vertex v given by the green check marks.

Proposition 3.6. The poset Im,n is a local lattice.

Proof. Let I, J be an intervals of Im,n with I ≤ J . We show that the segment [I, J ] is a lattice.
Let J1, J2 ∈ [I, J ]. Then, by Lemma 2.4, the intersection J1 ∩ J2 is given by the disjoint union of some

intervals Ci:
l
⊔

i=1

Ci. In this setting, there exists a unique j such that Cj contains I. Then the meet J1 ∧ J2

of J1 and J2 in the segment [I, J ] is exactly the interval Cj . Proposition 2.10 implies that the segment [I, J ]
is a lattice.

Note that in the above argument, the interval J did not play any role in determining the meet in [I, J ].

We could have replaced J by the maximum element M in Im,n, which is the entire quiver of
#–

Gm,n. That is,
the meet of J1, J2 in [I, J ] is the same as the meet of J1, J2 in [I,M ] = U(I). Thus, we also call the meet
of J1, J2 in [I, J ] as the meet of J1, J2 over I.

On the other hand, the join J1 ∨ J2 in [I, J ] is the minimum interval containing J1 ∪ J2 by definition.
Clearly, J1∪J2 ⊂ J ⊂M , and so the join of J1, J2 in [I, J ] is the same as the join of J1, J2 in [I,M ] = U(I).
Thus, we also call the join of J1, J2 in [I, J ] as the join of J1, J2 over I.

Example 3.7. Let I = ( 0 1 0
0 0 0 ) be an interval of I2,3. The intervals J = ( 0 1 1

0 0 0 ), J
′ = ( 0 1 0

0 1 0 ) in U(I) have
join J ∨ J ′ = ( 0 1 1

0 1 1 ) over I.

While we have seen in Proposition 3.6 that Im,n is a local lattice, it is not a lattice as a whole (Exam-
ple 3.8), nor is it locally distributive (Example 3.9).

Example 3.8. In general, the meet and join is ill-defined. For example, let J = ( 1 0 0
0 0 0 ) and J

′ = ( 0 0 0
0 0 1 ) be

intervals in I2,3. We note that J ∩J ′ = ∅, so that there is no I ∈ Im,n with J, J ′ ∈ U(I). Then, X1 = ( 1 1 1
0 0 1 )

and X2 = ( 1 0 0
1 1 1 ) are both minimal among intervals containing both J and J ′. Thus, J ∨ J ′, which is

supposed to be the minimum interval containing J ∪ J ′, is not well-defined. The poset Im,n is not a lattice,
in general.

Example 3.9. In general, the local lattice Im,n is not locally distributive. Indeed, let I = ( 0 1 0 0
0 0 0 0 ) and

J = ( 1 1 1 1
1 1 1 1 ) be intervals of I2,4. Moreover, let I1 = ( 1 1 0 0

1 1 1 0 ), I2 = ( 0 1 0 0
0 1 1 1 ), and I3 = ( 0 1 1 1

0 0 0 1 ) be intervals
of the segment [I, J ]. Then we compute I1 ∨ (I2 ∧ I3) = I1 and (I1 ∨ I2) ∧ (I1 ∨ I3) = ( 1 1 0 0

1 1 1 1 ) 6= I1.

4. Compression and Compressed Multiplicities

In this section, we present the underlying mechanism for an “interval-approximation” that we define
and study in Section 5. Here, we define compression functors based on certain essential vertices. These
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compression functors then lead to what we call compressed multiplicities. We show that the well-known
dimension vector and rank invariant are in fact special cases of compressed multiplicities. Furthermore,
we show that for interval-decomposable representations, the true multiplicity information can be recovered
from the compressed multiplicies.

4.1. Essential Vertices

First, we define two types of “essential vertices”.
Recall that a vertex x is said to be a source if there are no arrows α with target t(α) = x, and is said to

be a sink if there are no arrows α with source s(α) = x.

Definition 4.1 (Source-sink-essential vertices). Let I be an interval subquiver of
#–

Gm,n. A vertex x ∈ I0 is
said to be source-sink-essential (ss-essential) if x is a source or a sink in I.

The set of ss-essential vertices of I will be denoted by Iss0 .

Example 4.2. In the following interval subquiver I in
#–

G6,4:

I =

⊛

• • ⊛

⊛ • • • ⊛

⊛ • • • ⊛,

the vertices denoted by ⊛ are ss-essential vertices of I.

Lemma 4.3. Let I, J be intervals of Im,n. Assume that Iss0 ⊆ J0. Then we have I ≤ J .

Proof. Let x ∈ I0. Then, there is a source y, a sink z, and a path µ in I from y to z such that µ passes
through x. Since y, z ∈ Iss0 ⊆ J0 and J is convex, we have x ∈ J0, as desired.

Definition 4.4 (Corner-complete-essential vertices). Let I be an interval subquiver of
#–

Gm,n. A vertex x ∈ I0
is said to be corner-complete-essential (cc-essential) if x ∈ (pr1 I

ss
0 × pr2 I

ss
0 )
⋂

I0, where pri : Z× Z→ Z is
the projection map to the i-th axis.

The set of cc-essential vertices of I is denoted by Icc0 .

Example 4.5. For the interval subquiver I used in Example 4.2:

I =

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ • ⊛

⊛ ⊛ • ⊛ ⊛

the vertices denoted by ⊛ are cc-essential vertices of I.

Lemma 4.6. Let I, J be intervals of Im,n. Assume that Icc0 ⊆ J0. Then we have I ≤ J .

Proof. Since Iss0 ⊆ I
cc
0 ⊆ J0, we have I ≤ J by Lemma 4.3.
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4.2. Compression

In this subsection, we treat both types of essential vertices in parallel to define two types of compression
of representations of the equioriented 2D commutative grid

#–

Gm,n = (Q,R). In the previous subsection, we

defined the sets of essential vertices Iss0 and Icc0 . We consider the full subcategories of K
#–

Gm,n = K(Q,R) =
KQ/〈R〉 they induce.

Definition 4.7 (ss-compressed category and cc-compressed category). Let I be an interval subquiver of
#–

Gm,n and E be the set of all ss-essential vertices (or cc-essential vertices, respectively) of I. The ss-compressed

category Iss (resp. cc-compressed category Icc) of I is the full subcategory of K
#–

Gm,n with set of objects E.

For completeness, we also introduce the following concept, where we take all vertices of I to be essential.
We use the designation “tot” to stand for “total”, since all vertices are considered essential in Itot.

Definition 4.8 (compressed category). The compressed category Itot is the full subcategory of K
#–

Gm,n

consisting of all vertices of I.

Remark 4.9. For an interval I, we distinguish the following similar but different notions related to I:
I itself as a full subquiver of

#–

Gm,n, VI the representation of K
#–

Gm,n with support I, and Itot as the full

subcategory of K
#–

Gm,n with objects the vertices of I.

We note that the bound quiver of Itot is (I, RI) with the set of full commutativity relations RI . The
ss-compressed category or cc-compressed category can also be expressed as a bound quiver, and we identify
rep(Q∗

I , R
∗
I)
∼= rep I∗, where (Q∗

I , R
∗
I) is the bound quiver of the compressed category I∗ for ∗ = ss, cc, tot.

Throughout the rest of this work, we shall use the symbol ‘∗’ to stand for either ‘ss’, ‘cc’ or ‘tot’ for
statements that apply to all three cases as long as it does not cause any confusion.

Example 4.10. For the interval subquiver I in Example 4.2, the compressed categories (displayed as bound
quivers) are the following:

Iss :

⊛

⊛

⊛ ⊛

⊛ ⊛

and

Icc :

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛

while

Itot :

⊛

⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

⊛ ⊛ ⊛ ⊛ ⊛

.

Definition 4.11 (Compression functor). Let I be an interval subquiver of
#–

Gm,n and let ιssI : Iss →֒ K
#–

Gm,n

(or ιccI : Icc →֒ K
#–

Gm,n, or ι
tot
I : Itot →֒ K

#–

Gm,n, respectively) be the inclusion functor into the equioriented
2D commutative grid.
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The ss-compression functor CompssI (-) : repK
#–

Gm,n → rep Iss (the cc-compression functor CompccI (-) or
the tot-compression functor ComptotI (-), respectively) is defined by CompssI (M) = M ◦ ιssI (CompccI (M) =
M ◦ ιccI or ComptotI (M) =M ◦ ιtotI , respectively).

Note that these functors are exactly the restriction functors.

It is clear that the ss-compression, cc-compression and tot-compression functors are additive by definition.
To simplify the notation, we let Comp∗I(-) stand for CompssI (-), CompccI (-), or ComptotI (-) for statements
that hold for all three versions of compression.

Given M ∈ rep
#–

Gm,n, the compressed representation Comp∗I(M) is a representation of I∗. Similary, the
interval representation VI associated to the interval I has a compressed representation Comp∗I(VI). For
example, the interval I in Example 4.2 is associated to the interval representation

VI :

K 0 0 0 0 0

K K K 0 0 0

K K K K K 0

0 K K K K K

1
1

1

1
1

1
1

1
1

1

1
1

1
1 1

1
1

1

which has ss-compressed representation

CompssI (VI) :

K

K

K K

K K,

1

1
1

1

11

a representation of Iss.
While the compressed representation Comp∗I(M) may be interesting in its own right, in the next definition

we only consider the multiplicity of Comp∗I(VI) in Comp∗I(M).

Definition 4.12 (Compressed multiplicities). Let M be a representation of
#–

Gm,n and I ∈ Im,n. Define the
source-sink (ss)-compressed multiplicity as

dssM (I) := dCompss

I
(M)(CompssI (VI)).

While not the main focus of this paper, for completeness we also define the compressed multiplicities

dccM (I) := dCompcc

I
(M)(CompccI (VI)),

and
dtotM (I) := dComptot

I
(M)(ComptotI (VI)).

In the above, d?(-) is the usual multiplicity function obtained from Theorem 2.1.

One motivation for the above definitions is that we want to compute the multiplicity of an interval
module VI as a direct summand of M . However, as this may not be straightforward, we instead compute
the multiplicity with respect to compressed versions of M and I. The rest of this section is devoted to
exploring the consequences of this approach.

Remark 4.13. Let rk(M) : Con(P ) → J (C) be the generalized rank invariant as defined in [14], applied
to the setting we consider. That is, P is the poset corresponding to the m × n commutative grid, and the
target category is J (C) = J (vectK), the category of isomorphism classes of K-vector spaces. By definition
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Con(P ) is the set of path-connected subposets of P , which contains the set of intervals. See [14] for more
detailed definitions. We note that for I ∈ Im,n, the equality

dtotM (I) = dim rk(M)(I)

holds. This follows immediately from Lemma 3.1 of [18] applied to ComptotI (M). That is, for intervals I,
the tot-compressed multiplicity coincides with the generalized rank invariant of [14].

As the next example shows, the values of dssM (I) and dtotM (I) = dim rk(M)(I) can be different in general.

Example 4.14. Let M be the representation of
#–

G2,3 given by

K K2 K

0 K K

[ 11 ] [ 0 1 ]

1

[ 01 ] 1

For the interval

I :
• • •

• •

it can be computed that dssM (I) = 1 while dtotM (I) = 0.

Remark 4.15. However, if we allow to change the form of the “input” to the function dim rk(M)(-) and
broaden its domain of definition, the equality dssM (I) = dim rk(M)(Source(I) ∪ Sink(I)) holds by the same
reasoning as the previous remark. Note that in general, Source(I) ∪ Sink(I) is not necessarily a path-
connected subposet ([14, Definition 2.16]), and thus the original definition of the generalized rank invariant
cannot be used. That is, the values of the source-sink compressed multiplicity can be expressed as some
value of the generalized rank invariant suitably generalized.

4.3. Rank invariant and dimension vector as compression

In this subsection, we show that the compressed multiplicity generalizes the rank invariant [4], a well-
known invariant for 2D persistence modules.

Recall that the rank invariant is the function assigning to each pair s, t ∈
#–

Gm,n with a path from s to t,
the value

rank(M(s→ t))

where M(s→ t) :M(s)→M(t) is the linear map associated by M to a path from s to t. Note that this is
well-defined due to the commutativity relations imposed on M .

An interval R =
⊔y

i=x[bi, di]i ∈ Im,n is said to be a rectangle if bi = bi+1 and di = di+1 for any
i = x, · · · , y− 1. The set of rectangles in Im,n is denoted by Rm,n. It is immediate that any rectangle R has
a unique source s and a unique sink t. Below is an example of a rectangle together with its source and sink.

R :

• • • • • ⊛

• • • • • •

• • • • • •

⊛ • • • • •
s

t

We comment that if
#–

Gm,n is viewed as a subposet of Z × Z with coordinate-wise ≤, the rectangle R is in
fact the segment R = [s, t] in the poset Z× Z. In this work, we do not directly use this point of view since

we defined
#–

Gm,n as a bound quiver and not as a poset.
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Conversely, given any pair s, t ∈
#–

Gm,n with a path from s to t (as in the definition of the rank invariant),
there is a unique rectangle R with source s and sink t. Thus, the rank invariant can be equivalently defined
as the function assigning to each rectangle R in Im,n the value rank(M(s→ t)), where s is the unique source
of R and t the unique sink.

Let R be a rectangle with source s and sink t. Let us compute the values of the compressed multiplicities
at R.

• The ss-compressed category of R is: Rss : s t, so that CompssR(M) is M(s) M(t)
M(s→t)

. Note that
a linear map f : V → W between finite-dimensional vector spaces is equivalent to the direct sum

(K → 0)dimker f ⊕ (K
1
−→ K)rank f ⊕ (0→ K)dimcoker f . Then we compute

dssM (R) = d(Compss

R
(M))(CompssR(VR))

= d

M(s) M(t)
M(s→t)





(K K1 )

= rank(M(s→ t)).

• Since R has source s and sink t together with its two other corners (say u and w) as its cc-essential
vertices, the cc-compressed category of R is:

Rcc :
u t

s w

so that CompccR (M) is
M(u) M(t)

M(s) M(w)

.

Furthermore, CompccR (VR) is the injective indecomposable representation I(t) associated to the vertex
t:

I(t) =
K K

K K

1

1
1 1 ,

and so by [19, Theorem 3 (see also Example 3)]

dccM (R) = d








M(u) M(t)

M(s) M(w)











(
K K

K K

1

1
1 1 )

= dimHomRcc(I(t),M)− dimHomRcc(I(t)/ soc I(t),M)
= dimM(s)− (dimM(s)− rank(M(s→ t)))
= rank(M(s→ t)).

In the above, soc I(t) is the socle of I(t), which is the sum of all simple submodules of I(t) by definition.

• Finally, ComptotR (M) is the representation of Rtot obtained by restricting M to the rectangle R.
Furthermore, ComptotR (VR) is the injective indecomposable representation I(t) of Rtot, and

dtotM (R) = rank(M(s→ t)).

follows from [19, Theorem 3], as above.

The above considerations prove the following.
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Proposition 4.16. Let M be a representation of
#–

Gm,n and R a rectangle. For ∗ = ss, cc, tot, we have

d∗M (R) = rankM(s→ t),

where s is the unique source vertex of R and t is the unique sink vertex of R.

In this sense, the compressed multiplicities d∗M (-) are generalizations of the rank invariant. With our
invariant we hope to capture finer information that cannot be detected by just the rank invariant.

Next, we give an example of representations with the same rank invariants but different compressed
multiplicities for intervals that are not rectangles.

Example 4.17. Let I =
• •

•
be an interval of

#–

G2,2 =
• •

• •
. Note that I is not a rectangle. We consider

the following representations of
#–

G2,2:

M =
K K2

0 K

[ 10 ]

[ 10 ]
, N =

K K2

0 K

[ 10 ]

[ 01 ]
.

Clearly, rank invariants of M and N coincide. However, we have dssM (I) = 1 6= 0 = dssN (I).

We end this subsection with the following observation.

Proposition 4.18. Let M be a representation of
#–

Gm,n and i a vertex of
#–

Gm,n. For ∗ = ss, cc, tot, we have

d∗M ({i}) = dimM(i),

where {i} is the interval subquiver consisting of only the vertex i.

Proof. A direct computation shows that

d∗M ({i}) = dComp∗
{i}

(M)(Comp∗{i}(V{i})) = dM(i)(K) = dimM(i).

Alternatively, this follows immediately from Proposition 4.16 by considering the rectangle with s = t = i.

Namely, the compressed multiplicities d∗M (−) restricted to vertices coincide with the dimension vector
of M .

4.4. Compression and Inversion

Next, we derive some basic properties of d∗M (-), and end this section with Theorem 4.23, which states
that for interval-decomposable representations M , we can recover the true multiplicity function dM using
d∗M (-).

First, we start with some Lemmas that lead to a Key Lemma 4.21.

Lemma 4.19. If a representation M of
#–

Gm,n decomposes as M =M1 ⊕M2, then

d∗M (I) = d∗M1
(I) + d∗M2

(I)

for ∗ = ss, cc, tot.

Proof. Since the compression functor Comp∗I(-) is additive, we have Comp∗I(M) = Comp∗I(M1)⊕Comp∗I(M2).
Then the statement follows by the Krull-Schmidt theorem.
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Lemma 4.20. Let I, J be intervals of
#–

Gm,n. Then

d∗VJ
(I) =

{

1 if J ∈ U(I) (i.e. I ≤ J),

0 otherwise.

for ∗ = ss, cc, tot.

Proof. If I ≤ J , then Comp∗I(VJ ) = Comp∗I(VI), thus d
∗
VJ

(I) = 1.
On the other hand, if I 6≤ J , then there exists some i ∈ I∗0 \ J0 by Lemma 4.3 or Lemma 4.6 for

∗ = ss, cc, respectively, and by the fact that Itot0 = I0, for ∗ = tot. Thus, i ∈ supp(Comp∗
I(VI)) but i 6∈

supp(Comp∗I(VJ )). This means that Comp∗I(VJ ) does not have a direct summand isomorphic to Comp∗I(VI),
showing that d∗VJ

(I) = 0.

Lemma 4.21 (Key Lemma). Let M be an interval-decomposable representation of
#–

Gm,n and I an interval
in Im,n. Then

d∗M (I) =
∑

J∈U(I)

dM (VJ )

for ∗ = ss, cc, tot.

Proof. Let M ∼=
⊕

J∈Im,n

V
dM(VJ )
J be an interval decomposition of a representation M of

#–

Gm,n. Then

d∗M (I) =
∑

J∈Im,n

dM (VJ ) · d
∗
VJ
(I) =

∑

J∈U(I)

dM (VJ )

by Lemmas 4.19 and 4.20.

As a consequence, in the case that M is interval-decomposable, d∗M (I) does not depend on ∗.
Readers familiar with the Möbius theory for (locally-finite) posets [20] may recognize that Lemma 4.21

simply states that for interval-decomposable representations, the function d∗M (-) is equal to dM (-) multiplied
by the zeta function. Theorem 4.23 below can then be seen as an application of Möbius inversion. Here, we
give a direct proof of Theorem 4.23 and delay these Möbius-theoretic considerations to a later section.

First, we note the following proposition which follows immediately from Lemma 4.21.

Proposition 4.22. Let M be an interval-decomposable representation of
#–

Gm,n and I an interval in Im,n.
Then

dM (VI) = d∗M (I)−
∑

J∈U(I)\{I}

dM (VJ ).

for ∗ = ss, cc, tot.

Theorem 4.23 (For interval-decomposables, compressed multiplicity recovers the multiplicity). Let M be

an interval decomposable representation of
#–

Gm,n and I an interval in Im,n. Then:

dM (VI) = d∗M (I) +
∑

∅6=S⊆Cov(I)

(−1)#Sd∗M (
∨

S).

for ∗ = ss, cc, tot.

Proof. We define the function f : 2U(I) → Z by f(S) :=
∑

J∈S

dM (VJ ) for S ∈ 2U(I), where 2U(I) is the power

set of U(I). Rewriting Proposition 4.22, we have

dM (VI) = d∗M (I)− f





⋃

J∈Cov(I)

U(J)
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since U(I) \ {I} =
⋃

J∈Cov(I) U(J). Here, the inclusion-exclusion principle3 shows that

f





⋃

J∈Cov(I)

U(J)



 =
∑

∅6=S⊆Cov(I)

(−1)(#S−1)f

(

⋂

J∈S

U(J)

)

.

By Proposition 3.6, the join
∨

S in U(I) exists, and it can be checked that
⋂

J∈S

U(J) = U(
∨

S)

by definition. Therefore

f

(

⋂

J∈S

U(J)

)

= f(U(
∨

S)) = d∗M (
∨

S)

by Lemma 4.21, which completes our proof.

Theorem 4.23 says that to calculate dM (VI), it is enough to calculate dssM (J) (which is equal to dccM (J)
and also to dtotM (J) since M is interval-decomposable) for certain intervals J . We warn that the assumption
thatM is interval-decomposable is necessary for Key Lemma 4.21, and so is also necessary here. It is easy to
construct examples where the equality in Theorem 4.23 fails for non-interval-decomposable representations.

Example 4.24. Let us follow the proof of Theorem 4.23 by computing a particular example. Let M be an
interval-decomposable representation of

#–

G2,4 and let I = ( 0 1 1 0
0 1 1 0 ) ∈ I2,4, an interval. In this case,

Cov(I) = {I1 := ( 1 1 1 0
0 1 1 0 ) , I2 := ( 0 1 1 0

0 1 1 1 )}

and I1 ∨ I2 = ( 1 1 1 0
0 1 1 1 ) . By Lemma 4.21, we have

d∗M (I) =
∑

J∈U(I)

dM (J)

= dM (( 0 1 1 0
0 1 1 0 )) + dM (( 1 1 1 0

0 1 1 0 )) + dM (( 0 1 1 0
0 1 1 1 ))

+ dM (( 1 1 1 0
1 1 1 0 )) + dM (( 1 1 1 0

0 1 1 1 )) + dM (( 0 1 1 1
0 1 1 1 ))

+ dM (( 1 1 1 0
1 1 1 1 )) + dM (( 0 1 1 1

0 1 1 1 )) + dM (( 1 1 1 0
1 1 1 1 ))

= dM (VI) +
∑

J∈(U(I1)∪U(I2))

dM (J))

= dM (VI) +
∑

J∈U(I1)

dM (J) +
∑

J∈U(I2)

dM (J)−
∑

J∈(U(I1)∩U(I2))

dM (J)

= dM (VI) +
∑

J∈U(I1)

dM (J) +
∑

J∈U(I2)

dM (J)−
∑

J∈U(I1∨I2)

dM (J).

We thus have
dM (VI) = d∗M (I)− d∗M (I1)− d

∗
M (I2) + d∗M (I1 ∨ I2)

which is also given by Theorem 4.23.

As another example, let us consider the equioriented An-type quiver, which can be viewed as
#–

G1,n. In this
setting, Theorem 4.23 reduces to the following well-known formula. See for example, [2] and Definition 3.2
of [11].

Corollary 4.25. Let M ∈ rep
#–

G1,n. For I[i, j] an interval representation of
#–

G1,n,

dM (I[i, j]) = [rankM((i− 1)→ (j + 1))− rankM((i− 1)→ j)]−
[rankM(i→ (j + 1))− rankM(i→ j)] ,

where if i− 1 and/or j + 1 is not in
#–

G1,n, the corresponding term above is 0.

3More precisely, we use the inclusion-exclusion principle for finite measures, where we note that (U(I), 2U(I), f) is a finite
measure space.
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Proof. In
#–

G1,n, it follows immediately from the definition that

d∗M (I[i, j]) = rankM(i→ j)

for ∗ = ss, cc, tot. Furthermore, Cov(I[i, j]) contains I[i − 1, j] if i − 1 ∈
#–

G1,n and contains I[i, j + 1] if

j + 1 ∈
#–

G1,n, and no other elements.

It is well-known that all representations of
#–

G1,n are interval-decomposable, and thus Theorem 4.23 is
applicable. Thus,

dM (I[i, j]) = d∗M (I[i, j])
− d∗M (I[i − 1, j])− d∗M (I[i, j + 1])
+ d∗M (I[i − 1, j + 1]),

where if i − 1 and/or j + 1 is not in
#–

G1,n, the corresponding term above is 0. Expanding and rearranging
terms gives us the required expression.

We note that the same formula has been obtained by using Auslander-Reiten theory in the paper [19]
(Equation (9) of [19]). Our Theorem 4.23 here uses only the local lattice structure of Im,n, and it may be
interesting to explore Theorem 4.23 using Auslander-Reiten theory, and more generally, a representation-
theoretic perspective.

4.5. Restriction to equioriented 2× n commutative grid

In this subsection, we study the special case of
#–

G2,n, which is the equioriented commutative ladder. In
this setting, the compressed categories take on very nice forms.

Proposition 4.26. Let I ∈ I2,n. The quiver of the ss-compressed category Iss has one of the following
forms:

(1) •,

(2) • •,

(3) • • •,

(4) • • •,

(5) • • • •.

Proof. A direct computation shows this.

Similarly, we have the following.

Proposition 4.27. Let I ∈ I2,n. The bound quiver of the cc-compressed category Icc has one of the following
forms:

(1) •,

(2) • •,

(3) • • •,

(4) • • •,

(5) • • • •.

(6)
• •

• •
,

(7)
• • •

• •
,

(8)
• •

• • •
,

(9)
• • •

• • •
.
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Proof. It is immediate that there are at most 6 cc-essential vertices, arranged in the shape of (9), for an
interval in I2,n. The rest of the forms cover the cases where some of those vertices are not cc-essential in
I.

For I ∈ I2,n with n ≥ 5, Itot is of infinite representation type (see [5, Theorem 1.3] or [9] for example).
Therefore, it may be difficult to calculate the values dtotM (I).

On the other hand, Proposition 4.26 and Proposition 4.27 shows that Iss and Icc are of finite type for
any I ∈ I2,n. In addition, the Auslander-Reiten quivers for the bound quivers in the lists of Proposition 4.26
and Proposition 4.27 can be calculated explicitly. Thus, it is not difficult to calculate the values d∗M (I) for
∗ = ss, cc, in the setting of the equioriented 2× n commutative grid.

We discuss more about computations in Section 6.

5. Approximation

In this section, let we discuss how to use the above ideas as an approximation of general 2D persistence
modules in rep

#–

Gm,n by an interval-decomposable one. First, let us rephrase Theorem 4.23 using the language
of Möbius inversion, as discussed in Subsection 2.3, with underlying field F = R.

We can view dM and d∗M as functions Im,n → R (taking only nonnegative integer values). For dM , this
is an abuse of notation, since dM is a function from (isomorphism classes of) all indecomposables, but here

we are using the symbol to denote it restricted to the interval representations of
#–

Gm,n, identified with the
set of intervals Im,n.

In the notation of Subsection 2.3, we have dM , d
∗
M ∈ RIm,n . Then, the Key Lemma 4.21 states that for

M interval-decomposable,
d∗M = ζdM (5.1)

where the multiplication of ζ in Eq. (5.1) is precisely the left action of I(Im,n) on RIm,n . By Möbius inversion
(multiplication of µ = ζ−1), we obtain

dM = µd∗M . (5.2)

This expresses dM in terms of d∗M , a conclusion similar to the one of Theorem 4.23. Next, we show that
the coefficients appearing in Theorem 4.23 gives the values of the Möbius function µ([I, J ]) of Im,n.

Definition 5.1. Define the function µ′ : Seg(Im,n)→ R, an element of the incidence algebra I(Im,n) by the
following.

µ′([I, J ]) =















1 if I = J,
∑

J=
∨

S

∅6=S⊆Cov(I)

(−1)#S otherwise. (5.3)

Note that in the case I 6= J and where there is no ∅ 6= S ⊆ Cov(I) such that J =
∨

S, the sum above
is empty, and thus µ′([I, J ]) = 0. The values of µ′ are exactly the coefficients appearing in the formula of
Theorem 4.23, from which we immediately get the following Corollary.

Corollary 5.2 (Restatement of Theorem 4.23). Let M be an interval-decomposable representation of
#–

Gm,n

and I an interval in Im,n. Then:
dM = µ′d∗M

for ∗ = ss, cc, tot.

Theorem 5.3. Let µ′ be as defined in Definition 5.1, and µ be the Möbius function of the poset Im,n. Then,

µ = µ′.

In particular, Equation (5.3) gives the values of µ.
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Proof. Let I ≤ L be intervals in Im,n. Below, we compare the values µ([I, L]) and µ′([I, L]) by induction on
L.

First, let us consider L a cover of I and fix M = VL. By Corollary 5.2 and Equation 5.2, we have

µ′d∗M = µd∗M .

We obtain the following sequence of equations by working on both sides the equation.

(µ′d∗M )(I) = (µd∗M )(I)
∑

I≤J

µ′([I, J ])d∗M (J) =
∑

I≤J

µ([I, J ])d∗M (J)
∑

I≤J≤L

µ′([I, J ])d∗M (J) =
∑

I≤J≤L

µ([I, J ])d∗M (J)

µ′([I, I]) + µ′([I, L]) = µ([I, I]) + µ([I, L])
1 + µ′([I, L]) = 1 + µ([I, L]),

where going from the second line to the third line follows by Lemma 4.20. We conclude µ′([I, L]) = µ([I, L])
for any L ∈ Cov(I).

Next, we assume that for any interval L′ with L′ < L, µ′([I, L′]) = µ([I, L′]). Then we have the following
sequence of equations by taking M = VL and again using Lemma 4.20:

(µ′d∗M )(I) = (µd∗M )(I)
∑

I≤J≤L

µ′([I, J ]) =
∑

I≤J≤L

µ([I, J ])
∑

I≤J<L

µ′([I, J ]) + µ′([I, L]) =
∑

I≤J<L

µ([I, J ]) + µ([I, L]).

Since we have
∑

I≤J<L

µ′([I, J ]) =
∑

I≤J<L

µ([I, J ]) by the inductive assumption, we obtain µ′([I, L]) = µ([I, L]).

By the induction, we get the conclusion.

As we have seen, dM = µd∗M for M interval-decomposable. Even in the case where M is not interval-
decomposable, we nevertheless can do the transformation. Thus we define δ∗M := µd∗M in general.

Definition 5.4. Put ∗ = ss, cc, tot. Define δ∗M := µd∗M . In particular, for each I ∈ Im,n an interval

subquiver of
#–

Gm,n,

δ∗M (I) := d∗M (I) +
∑

∅6=S⊆Cov(I)

(−1)#Sd∗M (
∨

S).

First, we note the following obvious property of δ∗M (-).

Lemma 5.5. If M ∼=M1 ⊕M2, then we have

δ∗M (-) = δ∗M1
(-) + δ∗M2

(-).

Proof. Since d∗M (-) = d∗M1
(-) + d∗M2

(-) by Lemma 4.19, we have the desired equation by definition.

Since in general

M ∼=
⊕

X∈L

XdM(X)

by Theorem 2.1 (where dM is the actual multiplicity function, not restricted to intervals), one way of
constructing an approximating interval-decomposable object is to naively define

δ∗(M) =
⊕

I∈Im,n

(VI)
δ∗M (I)

(5.4)

by taking the function δ∗M on Im,n as a substitute for the function dM on L. Defined this way, M ∼= δ∗(M)
for interval-decomposableM . However, the value δ∗M (I) can be negative in general, and thus the direct sum
in Eq. (5.4) does not make sense.

For example, we have the following.
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Example 5.6. Let M be the representation of
#–

G2,3 given by

K K2 K

0 K K

[ 11 ] [ 0 1 ]

1

[ 01 ] 1

The value of δssM (I) is 0 except in the cases of I being one of the intervals I1, I2, I3, I4 given below.

(1) For I1 :
• •

• •
, δssM (I1) = −1,

(2) For I2 :
• • •

• •
, δssM (I2) = 1,

(3) For I3 :
•

• •
, δssM (I3) = 1,

(4) For I4 :
• •

, δssM (I4) = 1.

Proof. We directly use Definition 5.4 to compute δssM (I1). We let Cov(I1) = {I2, I5}, and let I6 = I2 ∨ I5,
where the intervals are given below. We first compute the value of the compressed multiplicity dssM (-) of
these intervals. We have:

I1 :
• •

• •
, dssM (I1) = 0,

I2 :
• • •

• •
, dssM (I2) = 1,

I5 :
• •

• • •
, dssM (I5) = 0,

I6 :
• • •

• • •
, dssM (I6) = 0.

Thus, by definition,
δssM (I1) = 0− 1− 0 + 0 = −1.

The other computations follow similarly.

For M interval-decomposable, it is clear from the above that all values of δ∗M are nonnegative, as it is
equal to dM itself. In the next example we see that the converse does not hold, and so we cannot use the
nonnegativity of δ∗M to check for interval-decomposability.

Example 5.7 (Continuation of Example 5.6). There exist N such that δ∗N is nonnegative, but N is not
interval-decomposable.

In particular, let M and Ii(i = 1, 2, 3, 4) be as given in Example 5.6. Then N := M ⊕ I1 is such an
example.

Proof. Since N =M ⊕ I1, δssN = δssM + δssI1 by Lemma 5.5. Then we have

δssN (I1) = −1 + 1 = 0

and δssN (I) = δssM (I) + 0 ≥ 0 for all intervals I 6= I1. Thus, δssN is nonnegative, but N is not interval-
decomposable since M is an indecomposable summand of N that is not isomorphic to an interval represen-
tation.
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To deal with the possibility of negative terms in δ∗M in general, we use the formalism of the split
Grothendieck group to express the addition of a negative number of copies of an interval in a direct sum.
For more details, see for example the notes [21, Chapter 2].

Definition 5.8. The split Grothendieck group Gr(C) of an additive category C is the free abelian group
generated by isomorphism classes [C] of objects in C modulo the relations [C1 ⊕ C2] = [C1] + [C2] for all
objects C1, C2 of C. For an object C of C, we denote by [[C]] the element of Gr(C) represented by [C].

In the following we consider the split Grothendieck group Gr(rep
#–

Gm,n) of rep
#–

Gm,n. Then by the Krull-
Schmidt theorem we easily see that it has a basis {[[L]] | L ∈ L}, where L is a complete set of representatives

of the isomorphism classes of indecomposable representations of
#–

Gm,n (see [21, Theorem 2.3.6]). Thus each

X ∈ Gr(rep
#–

Gm,n) is uniquely expressed in the form

X =
∑

L∈L

aL [[L]]

with aL ∈ Z for all L ∈ L. Here we define the representations

X+ :=
⊕

L∈L
aL≥0

LaL and X− :=
⊕

L∈L
aL<0

L(−aL), (5.5)

which are called the positive part and the negative part of X , respectively. Note that they are repre-
sentations of

#–

Gm,n with the property that X = [[X+]] − [[X−]] because [[X+]] =
∑

L∈L
aL≥0

aL [[L]] and [[X−]] =
∑

L∈L
aL<0

(−aL) [[L]]. Therefore, X can be uniquely presented by the pair (X+, X−) of representations of
#–

Gm,n.

Definition 5.9 (interval-decomposable approximation). LetM ∈ rep
#–

Gm,n. Define the interval-decomposable
approximation δ∗(M) of M by

δ∗(M) :=
∑

I∈Im,n

δ∗M (I) [[VI ]] ∈ Gr(rep
#–

Gm,n) (5.6)

for ∗ = ss, cc, or, tot.

By the above observation, δ∗(M) can be expressed by the pair (δ∗(M)+, δ
∗(M)−) of interval-decomposable

representations, where

δ∗(M)+ =
⊕

I∈Im,n

δ∗M (I)>0

VI
δ∗M (I) and δ∗(M)− =

⊕

I∈Im,n

δ∗M (I)<0

VI
(−δ∗M (I)).

Theorem 5.10. Let M ∈ rep
#–

Gm,n be interval-decomposable. Then, δ∗(M) = [[M ]], or equivalently,
δ∗(M)+ ∼=M and δ∗(M)− = 0.

Proof. Because M is interval-decomposable, δ∗M = dM . The conclusion follows immediately from this.

Note that the converse trivially holds. If δ∗(M) = [[M ]] then M is interval-decomposable.
Let us discuss the relationship between M and δ∗(M). In particular, we focus on dimension vectors and

rank invariants.

Example 5.11 (Continuation of Example 5.6). With the same notation as in Example 5.6, we have the
equality

∑

I∈I2,3

δssM (I) · dim(VI) = ( 1 1 1
0 1 1 ) + ( 0 1 0

0 1 1 ) + ( 1 1 0
0 0 0 )− ( 1 1 0

0 1 1 )

= ( 1 2 1
0 1 1 )

= dim(M).
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For δccM , we have a similar equality of the dimension vectors for the example above. This is not a
coincidence, and in fact the equality always holds (see Corollary 5.14). First we prove the following stronger
statement.

Theorem 5.12. Let M be a representation of
#–

Gm,n = (Q,R), and let i and j be vertices of Q such that
there exists a path from i to j in Q. Then we have

∑

I∈Im,n

δ∗M (I) · rankVI(i→ j) = rankM(i→ j). (5.7)

for ∗ = ss, cc, tot.

To prove the theorem above we need the following lemma, which is the essence of Theorem 5.12.

Lemma 5.13. Let M ∈ rep
#–

Gm,n and I ∈ Im,n. Then

d∗M (I) =
∑

I≤J∈Im,n

δ∗M (J)

Proof. This follows from Möbius inversion. That is, by definition δ∗M := µd∗M and thus

d∗M = ζδ∗M

since µ−1 = ζ. The right-hand side expanded out gives the result.

Then we prove Theorem 5.12.

Proof of Theorem 5.12. Since there is a path from i to j, the rectangle with source i and sink j exists. We
denote this rectangle with source i and sink j by Ri,j .

We note that for an interval I ∈ Im,n, rankVI(i→ j) is 1 if and only if I contains the rectangle Ri,j and
is 0 otherwise. This gives the first equality in the following computation. We have

∑

I∈Im,n

δ∗M (I) · rankVI(i→ j) =
∑

Ri,j≤I∈Im,n

δ∗M (I)

= d∗M (Ri,j)
= rankM(i→ j),

where the second equality follows from Lemma 5.13, and the last equality follows by applying Proposi-
tion 4.16.

As a corollary of Theorem 5.12, we have the following desired equation for dimension vectors.

Corollary 5.14. Let M be a representation of
#–

Gm,n. Then we have

∑

I∈Im,n

δ∗M (I) · dim(VI) = dim(M). (5.8)

Proof. It is enough to show that for any i ∈ G0,

∑

I∈Im,n

δ∗M (I) · (dim(VI))i = (dim(M))i.

Note that (dim(VI))i = rankVI(i → i) and (dim(M))i = rankM(i → i), where the path i → i means the
path ei of length 0 at i. Thus, by Theorem 5.12, we obtain the above equation.
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Let us give another consequence of this result, which warns us against thinking of approximation in
terms of functions.

In general, M ∈ rep
#–

Gm,n can be written as M ∼= MI ⊕ X , where MI is interval-decomposable, and
0 6= X has no interval representation as a summand. By Lemma 5.5,

δ∗M = δ∗MI
+ δ∗X = dMI

+ δ∗X : Im,n → R (5.9)

where we also use the fact that δ∗MI
= dMI

because MI is interval-decomposable. Restricted to Im,n, dM
has the same values as dMI

. Precisely speaking, by our abuse of notation dM : Im,n → R above is the full
multiplicity function dM restricted to the set of interval representations, which can be identified with Im,n.
Thus, we may be tempted to think of using δ∗M to approximate dMI

= dM as functions on Im,n. To measure
the error involved, we use the ℓ1-norm of functions f : Im,n → R defined by ‖f‖1 =

∑

I∈Im,n
|f(I)|. Let us

consider the value of
‖δ∗X‖1 = ‖δ∗M − dM‖1 .

We remind the reader that we are considering dM as a function on Im,n by restriction.

Corollary 5.15. Let
#–

Gm,n be an equioriented commutative grid of size at least 2 × 5 or 5 × 2. For any

ℓ ∈ N, there exists an indecomposable non-interval representation X ∈ rep
#–

Gm,n, such that

‖δ∗X‖1 ≥ ℓ.

Proof. The construction in [10] provides such an indecomposable non-interval X ∈ rep
#–

G2,5 (for
#–

Gm,n larger
than 2× 5, we simply pad with zero spaces and zero maps):

Kℓ K2ℓ K2ℓ Kℓ 0

0 Kℓ K2ℓ K2ℓ Kℓ

[E0 ] [E 0 ]

[E0 ]
[EE ] [E E

E J ]
[E 0 ]

[E E ]

where each E is an ℓ× ℓ identity matrix, and J is the ℓ× ℓ Jordan block with eigenvalue λ = 1.
Let i be one of the vertices such that X(i) has dimension at least ℓ. We compute:

ℓ ≤ dimX(i) =
∑

I∈Im,n

δ∗X(I) · (dim(VI))i

=
∑

I:i∈I

δ∗X(I)

≤
∑

I:i∈I

|δ∗X(I)|

≤
∑

I∈Im,n

|δ∗X(I)|

= ‖δ∗X‖1 ,

where the first line follows from Corollary 5.14.

Remark 5.16. A simpler proof can be provided, if we allow X to not be indecomposable in the preceeding
corollary, as follows. Let N be an indecomposable non-interval representation, which is known to exist. For
example, the above indecomposable can be reused. Then, defining X as the direct sum of ℓ copies of N , we
have that X and

‖δ∗X‖1 =

∥

∥

∥

∥

∥

ℓ
∑

i=1

δ∗N

∥

∥

∥

∥

∥

1

= ℓ ‖δ∗N‖1 ≥ ℓ

since ‖δ∗N‖1 ≥ 1 (otherwise δ∗N = 0 and thus N = 0, a contradiction).
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In other words, the “error term” ‖δ∗X‖1 can be made arbitrarily large by varying M . However, in the
above analysis, we considered the “error term” ‖δ∗X‖1 = ‖δ∗M − dM‖1 where dM is considered as a function
on Im,n by restriction. That is, its values on non-intervals are ignored. A more comprehensive analysis could
potentially take into account those terms as well.

Finally, let us give an interpretation of Theorem 5.12 and Corollary 5.14. The left-hand side

∑

I∈Im,n

δ∗M (I) · rankVI(i→ j)

of Equation (5.7) in Theorem 5.12 and the left-hand side

∑

I∈Im,n

δ∗M (I) · dim(VI)

of Equation (5.8) in Corollary 5.14 can be viewed as the rank invariant and the dimension vector of the
interval-decomposable approximation

δ∗(M) =
∑

I∈Im,n

δ∗M (I) [[VI ]] ,

respectively. That is, the rank invariant (dimension vector, respectively) of δ∗(M) can be defined by adding
the rank invariants (dimension vectors, respectively) of its summands. With this, Theorem 5.12 and Corol-
lary 5.14 simply states that the interval-decomposable approximation δ∗(M) preserves the rank invariant
and dimension vector of M . It is in this sense that we think of approximating M by δ∗(M).

6. Algorithms for equioriented commutative ladders

Let M be a persistence module over an equioriented m×n commutative grid. For completeness, we first
present a high-level overview of an algorithm for the computation of our proposed interval-decomposable ap-
proximation δ∗(M). Afterwards, we consider the case of persistence modules over equioriented commutative
ladders (2 × n commutative grids).

The computation of δ∗(M) =
∑

I∈Im,n

δ∗M (I) [[VI ]] of M involves two major steps:

(1) (Algorithm 1) computation of the compressed multiplicity function d∗M : Im,n → N, defined by

d∗M (I) := dComp∗
I
(M)(Comp∗I(VI))

for I ∈ Im,n, and

(2) (Algorithm 2) computation of the Möbius inversion δ∗M = µd∗M given by

δ∗M (I) := d∗M (I) +
∑

∅6=S⊆Cov(I)

(−1)#Sd∗M (
∨

S).

for I ∈ Im,n.

Algorithm 1 below for the computation of the compressed multiplicity simply expands upon the definition.
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Algorithm 1 Compressed multiplicity d∗M of M

1: function CompressedMultiplicity(M)
2: Initialize the function d∗M on Im,n

3: for I ∈ Im,n do

4: Compute the compressed representation M ′ = Comp∗I(M).
5: Compute the compressed representation I ′ = Comp∗I(VI).

(which is simply the interval representation with the whole of I∗ as support)
6: Compute the multiplicity dM ′(I ′) of I ′ in M ′.
7: d∗M (I)← dM ′ (I ′)
8: end for

9: return d∗M
10: end function

Line 4 of Algorithm 1 for the compressed representationM ′ = Comp∗I(M) simply means forgetting about
the vector spaces (internal linear maps, resp.) of M corresponding to objects (morphisms, resp.) not in the
compressed category I∗. Note that depending on how M is stored, extra computations are needed (if some
of the internal maps of M are not explicitly stored, they may need to be computed explicitly and stored if
they rely on internal maps about to be forgotten). We provide an example of this with the 2× n case later.

In general, the computation of the multiplicity dM ′ (I ′) of I ′ in M ′ (Line 6 of Algorithm 1) can be
accomplished by computing the dimensions of certain homomorphism spaces to entries in the almost split
sequence4 starting at I ′ (see [19, Theorem 3], [22, Corollary. 2.3] and also [8, Algorithms 3, 4]).

Algorithm 2 is also a straightforward expansion of the definition.

Algorithm 2 Möbius inversion δ∗M of d∗M

1: function MöbiusInversion(d∗M )
2: Initialize the function δ∗M on Im,n

3: for I ∈ Im,n do

4: a← d∗M (I)
5: Compute Cov(I)
6: for ∅ 6= S ⊆ Cov(I) do
7: Compute

∨

S
8: a← a+ (−1)#Sd∗M (

∨

S)
9: end for

10: δ∗M (I)← a
11: end for

12: return δ∗M
13: end function

Algorithm 2 requires the computation of joins of cover elements of I. We comment on this below. Let
I =

⊔t

i=s[bi, di]i. By Proposition 3.4, the elements of Cov(I) are given by a specific form. We recall that
Proposition 3.4 only provides a list of candidates, from which picking up all valid intervals forms Cov(I).
We single out the following four potential cover elements specified by Proposition 3.4 that need special
consideration:

4A non-split short exact sequence (E) : 0 → X
f
−→ Y

g
−→ Z → 0 is called an almost split sequence starting at X if both X

and Z are indecomposable, and if for any homomorphism h : X → V , either h is a split monomorphism or the pushout of (E)
along h splits.
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(1) extension of the last row of I by one adjacent vertex left of the row (top-left)

Ctl =
t
⊔

i=s

[b′i, di]i, where b
′
i =

{

bi − 1 if i = t,

bi otherwise,

(2) extension of the first row of I by one adjacent vertex right of the row (bottom-right)

Cbr =

t
⊔

i=s

[bi, d
′
i]i, where d

′
i =

{

di + 1 if i = s,

di otherwise,

(3) addition of one vertex above the upper-left vertex of I (top)

Ct =

t
⊔

i=s

[bi, di]i ⊔ [bt, bt]t+1,

(4) addition of one vertex below the lower-right vertex of I (bottom)

Cb = [ds, ds]s−1 ⊔
t
⊔

i=s

[bi, di]i.

Remark 6.1. Then, it is clear that if S ⊂ Cov(I)

• does not contain both Ctl and Ct, and

• does not contain both Cbr and Cb,

then
∨

S =
⋃

C∈S C. That is, simply taking the union is enough since the union is an interval.
Otherwise, we need to add at most two vertices to

⋃

C∈S C in order to obtain
∨

S. If S ⊂ Cov(I)
contains both Ctl and Ct, then an additional vertex in the top left needs to be added to form an interval.
Similarly, if S ⊂ Cov(I) contains both Cbr and Cb, then an additional vertex in the bottom right needs to
be added to form an interval.

Example 6.2. We provide an example using the interval I in the commutative grid
#–

G5,6 with candidate
vertices marked as in Example 3.5.

◦ ◦ ◦ ◦

◦ • • ◦

◦ ◦ • ◦

◦ ◦ ◦ ◦

◦ ✓ ◦ ◦

✓ • • ✗

◦ ✓ • ✓

◦ ◦ ✓ ◦

In dimension vector notation,

I =

(

0 0 0 0
0 1 1 0
0 0 1 0
0 0 0 0

)

and all the cover elements are given by

Ctl =

(

0 0 0 0
1 1 1 0
0 0 1 0
0 0 0 0

)

, Ct =

(

0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 0

)

,

Cbr =

(

0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 0

)

, Cb =

(

0 0 0 0
0 1 1 0
0 0 1 0
0 0 1 0

)

,

C =

(

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

)

.

30



Thus, for example,

Cbr ∨ Ct ∨ C =

(

0 1 0 0
0 1 1 0
0 1 1 1
0 0 0 0

)

= Cbr ∪ Ct ∪ C

while

Ctl ∨ Ct ∨Cbr =

(

1 1 0 0
1 1 1 0
0 0 1 1
0 0 0 0

)

= {v} ∪ Ctl ∪ Ct ∪ Cbr

where v is the vertex at the upper-left corner.

Theorem 6.3. Algorithm 2, which computes δ∗M given d∗M , can be performed with time complexity O(#Im,n2
DDm),

where D = maxI∈Im,n
#Cov(I).

Proof. For each I ∈ Im,n, there are at most 2D − 1 nonempty subsets S of Cov(I). By the formula

δ∗M (I) := d∗M (I) +
∑

∅6=S⊆Cov(I)

(−1)#Sd∗M (
∨

S)

for each S, we need to compute
∨

S, which is the join of at most D intervals.
We first compute

⋃

C∈S C by the following. Assuming that intervals are represented in the form of I =
⊔t

i=s[bi, di]i (row-wise), with the number of rows equal tom, the union of two cover elements can be computed
by iterating through the m rows and taking the union of the corresponding intervals [bi, di]i ∪ [b′i, d

′
i]i. We

iterate over the elements of S (at most D) to obtain
⋃

C∈S C.
Finally, the above discussion around Remark 6.1 concerning the four cover elements Ctl, Ct, Cbr , Cb that

need special consideration provides the computation of
∨

S by modifying the union
⋃

C∈S C. We simply
need to check for the presence of both Ctl and Ct in S, and both Cbr and Cb in S, and add the additional
vertices to

⋃

C∈S C to obtain
∨

S, as noted in Remark 6.1.
By the above, we have as an upper bound #Im,n · (2D − 1) ·D ·m operations, giving the claimed time

complexity.

Next, we consider the case of equioriented commutative ladders with ∗ = ss, where it has been noted in
Subsection 4.5 that the ss-compressed category is of Dynkin An-type with n ≤ 4 (Proposition 4.26). So, let
M be a persistence module over the 2× n commutative grid, and let

d = max
v∈(

#–

G2,n)
0

dimM(v).

In particular M ∈ rep
#–

G2,n is given as the following collection of vector spaces and linear maps

M(2, 1) M(2, 2) · · · M(2, n)

M(1, 1) M(1, 2) · · · M(1, n)

M((2,1)→(2,2)) M((2,1)→(2,3)) M((2,n−1)→(2,n))

M((1,1)→(1,2))

M((1,1)→(2,1))

M((1,2)→(1,3))

M((1,2)→(2,2))

M((1,n−1)→(1,n))

M((1,n)→(2,n))

such that

M(2, j) M(2, j + 1)

M(1, j) M(1, j + 1)

M((2,j)→(2,j+1))

M((1,j)→(1,j+1))

M((1,j)→(2,j)) M((1,j+1)→(2,j+1))

commutes for all j ∈ {1, 2, . . . , n − 1}. For (x, y), (i, j) distinct vertices of
#–

G2,n such that x ≤ i and

y ≤ j (that is, there exists a path from (x, y) to (i, j) in
#–

G2,n), M((x, y) → (i, j)) is the composition

M(p) = M(αℓ) · · ·M(α1) where p = (αl, . . . , αℓ) is a path from (x, y) to (i, j) in
#–

G2,n. Note that by the
commutativity relations, the composition does not depend on the path chosen.
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In Algorithm 3, we specialize Algorithm 1 to this setting and add more details. In particular, we
precompute all the compositions M((x, y) → (i, j)) (as each will be used at some point in the algorithm,
anyway), and explicitly write down formulae for dM ′(I ′) using ranks of certain matrices.

Algorithm 3 ss-compressed multiplicity (2 × n case)

1: function ssCompressedMultiplicityTwoByN(M)
2: Initialize the function dssM on I2,n
3: Compute M((x, y)→ (i, j)) for all (x, y) 6= (i, j) with a path from (x, y) to (i, j)
4: for I ∈ I2,n do

5: Compute dM ′(I ′) using the formula in Proposition 6.4,
where M ′ = CompssI (M) and I ′ = CompssI (VI).

6: dssM (I)← dM ′ (I ′)
7: end for

8: return dssM
9: end function

Proposition 6.4. Let M ∈ repK
#–

G2,n, I ∈ I2,n and let M ′ = CompssI (M) and I ′ = CompssI (VI) be their
respective compressed representations of Iss. Below, we use the convention that s1 and t1 means a vertex
on row 1 (i.e. has coordinate (1, ?)), and s2 and t2 means a vertex on row 2 (i.e. has coordinate (2, ?)).

Then I is in one of the following four cases, and the value of the compressed multiplicity dssM (I) = dM ′(I ′)
is given by the respective formula.

• If I is a rectangle with source s and sink t then

dM ′(I ′) = rankM(s→ t)

• If I has sources s1, s2 and sink t2 then

dM ′ (I ′) = rankM(s2 → t2) + rankM(s1 → t2)

− rank
[

M(s2 → t2) M(s1 → t2)
]

• If I has source s1 and sinks t1, t2 then

dM ′(I ′) = rankM(s1 → t2) + rankM(s1 → t1)− rank

[

M(s1 → t2)
M(s1 → t1)

]

• If I has sources s1, s2 and sinks t1, t2 then

dM ′ (I ′) = rank

[

M(s2 → t2) M(s1 → t2)
0 M(s1 → t1)

]

+ rankM(s1 → t2)

− rank

[

M(s1 → t2)
M(s1 → t1)

]

− rank
[

M(s2 → t2) M(s1 → t2)
]

Proof. Each element I of I2,n has a staircase form, which is denoted by:

I =
k
⊔

i=j

[bi, di]i

for some integers 1 ≤ j ≤ k ≤ 2 and some integers 1 ≤ bi ≤ di ≤ n for each j ≤ i ≤ k such that
bi+1 ≤ bi ≤ di+1 ≤ di for any i ∈ {j, . . . , k − 1}.

The two cases given by
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• j = k, or

• b1 = b2 and d1 = d2

correspond to I being a rectangle (with source s = (j, bj) and sink t = (j, dj), or source s = (1, b1) and sink
t = (2, d2), respectively). Here, Proposition 4.16 gives the formula for the compressed multiplicity.

Thus, we are left with the cases that 1 = j < k = 2, and that b1 6= b2 or d1 6= d2. By the general
restriction that b2 ≤ b1 ≤ d2 ≤ d1, we have the following three cases

• b2 < b1 ≤ d2 = d1. This corresponds to the case that I has sources s1 = (1, b1), s2 = (2, b2) and sink
t2 = (2, d2), as illustrated below:

s1

s2 t2

with Iss : s1 t2 s2 emphasized. Then, the compressed representations are given by

I ′ : K K K1 1 and M ′ : M(s1) M(t2) M(s2).
M(s1→t2) M(s2→t2)

We note that I ′ is injective with socle given by

soc I ′ : 0 K 0.0 0

Using [19, Theorem 3], we have

dM ′(I ′) = dimHom(I ′,M ′)− dimHom(I ′/ soc I ′,M ′).

A homomorphism I ′ →M ′ is given by triples (x, y, z) such that

K K K

M(s1) M(t2) M(s2)

1

x y

1

z

M(s1→t2) M(s2→t2)

commutes. That is, y = M(s2 → t2)z = M(s1 → t2)x. In other words, the homomorphism space
Hom(I ′,M ′) is given by solutions to

[

M(s2 → t2) M(s1 → t2)
]

[

z
−x

]

= 0

(with y fully determined by x), which has dimension equal to

dimM(s2) + dimM(s1)− rank
[

M(s2 → t2) M(s1 → t2)
]

.

On the other hand, a homomorphism I ′/ soc I ′ →M ′ is given by triples (x, 0, z) such that

K 0 K

M(s1) M(t2) M(s2)

0

x 0

0

z

M(s1→t2) M(s2→t2)

commutes. Thus

dimHom(I ′/ soc I ′,M ′) = (dimM(s1)− rankM(s1 → t2))

+ (dimM(s2)− rankM(s2 → t2)) .

Combining the above formulas yields the claimed formula for dM ′ (I ′).
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• b2 = b1 ≤ d2 < d1. This corresponds to the case that I has source s1 = (1, b1) and sinks t1 =
(1, d1), t2 = (2, d2) as illustrated below:

s1 t1.

t2

The proof for the formula of dM ′(I ′) in this case is dual to the previous case.

• b2 < b1 ≤ d2 < d1. This corresponds to the case that I has sources s1 = (1, b1), s2 = (2, b2) and sinks
t1 = (1, d1), t2 = (2, d2) as illustrated below:

s1

s2

t1

t2

Then, the compressed representations are given by

I ′ : K K K K1 1 1

and

M ′ : M(s2) M(t2) M(s1) M(t1).
M(s2→t2) M(s1→t2) M(s1→t1)

The almost split sequence starting from I ′ is given by

0 I ′ B C 0

where

B : K K K2 K1

[

1 0
] [

0 1
]

and
C : 0 0 K 00 0 0 .

Using [19, Theorem 3], we have

dM ′ (I ′) = dimHom(I ′,M ′)− dimHom(B,M ′) + dimHom(C,M ′). (6.1)

For (x, y, z, w) ∈ Hom(I ′,M ′), the commutativity of

K K K K

M(s2) M(t2) M(s1) M(t1)

1

x y z

1 1

w

M(s2→t2) M(s1→t2) M(s1→t1)

is equivalent to
M(s2 → t2)x = y =M(s1 → t2)z and w =M(s1 → t1)z.

Then, each homomorphism is uniquely determined by a solution of

[

M(s2 → t2) M(s1 → t2)
]

[

x
−z

]

= 0.
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Thus,

dimHom(I ′,M ′) = dimM(s2) + dimM(s1)

− rank
[

M(s2 → t2) M(s1 → t2)
]

.
(6.2)

Next, for (x, y, z, w) ∈ Hom(B,M ′), the commutativity of

K K K2 K

M(s2) M(t2) M(s1) M(t1)

1

x y

[

1 0
] [

0 1
]

[

z1 z2

]

w

M(s2→t2) M(s1→t2) M(s1→t1)

is equivalent to

M(s2 → t2)x = y

M(s1 → t2)z1 = y

M(s1 → t2)z2 = 0

M(s1 → t1)z1 = 0

M(s1 → t1)z2 = w.

Rewriting the above, we get that each homomorphism is uniquely determined by a solution to
[

M(s2 → t2) M(s1 → t2)
0 M(s1 → t1)

] [

x
−z1

]

= 0 and M(s1 → t2)z2 = 0

with y and w determined from x and z2, respectively. Thus,

dimHom(B,M ′) = dimM(s2) + dimM(s1)

− rank

[

M(s2 → t2) M(s1 → t2)
0 M(s1 → t1)

]

+ dimM(s1)− rankM(s1 → t2)

(6.3)

Finally, it is clear that

dimHom(C,M ′) = dim (kerM(s1 → t1) ∩ kerM(s1 → t2))

= dimker

[

M(s1 → t1)
M(s1 → t2)

]

= dimM(s1)− rank

[

M(s1 → t1)
M(s1 → t2)

]

.

(6.4)

Substituting Equations (6.2), (6.3), (6.4) into Equation (6.1) gives the claimed formula.

Let ω < 2.373 be the matrix multiplication exponent [23, 24].

Theorem 6.5 (Compressed multiplicity (2× n case)). For M a persistence module over
#–

G2,n, Algorithm 3
computes dssM with time complexity

O

(

2ω + 5

24
n4dω

)

.

where d = max
v∈(

#–

G2,n)
0

dimM(v).
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Proof. First, let us analyze Line 3 of Algorithm 3, which computes M((x, y) → (i, j)) = M(p) for (x, y) 6=
(i, j) with a path p from (x, y) to (i, j). The value of M(p) for paths p with length equal to 1 (arrows) are
already known. Assume that the values of M(p) for all paths of length ℓ are already computed. Then, the
value of M(p) for each path p of length ℓ+ 1 can be computed by one matrix multiplication each. We note
further that M((x, y)→ (i, j)) =M(p) does not depend on the which particular path p is taken from (x, y)
to (i, j). Thus, we can inductively compute the value of M((x, y)→ (i, j)) using one matrix multiplication
for each pair of vertices (x, y), (i, j) such that (x, y) 6= (i, j) and there is a path of length greater than 1
from (x, y) to (i, j). Since there are

3

2
(n+ 1)n− 2n− (3n− 2) = O

(

3

2
n2

)

such pairs of vertices (x, y) 6= (i, j) in the 2 × n commutative grid by a simple combinatorial argument,
Line 3 of Algorithm 3 can be performed in O(32n

2dω).
Next, we analyze Lines 4 to 7 of Algorithm 3. By [8, Corollary 4.12], there are

#I2,n =
1

24
n(n+ 1)(n2 + 5n+ 30) = O

(

1

24
n4

)

intervals I to process. For each interval I, the computation of dM ′ (I ′) using Proposition 6.4 involves
computing the rank of a 2d × 2d, a 2d × d, a d × 2d, and a d × d matrix in the worst case. Note that the
rank of an e × f matrix (e ≤ f) can be computed with O(feω−1) field operations by Gaussian elimination
[25]. Thus, we get a cost of O((2ωdω + 5dω) 1

24n
4) for the computation of dM ′ (I ′).

Overall, we get a cost of O(32n
2dω + 2ω+5

24 n4dω) dominated by the latter term, giving the result.

For I ∈ I2,n, as shown in Example 3.3, #Cov(I) ≤ 4. Thus, we get the following.

Corollary 6.6 (Möbius inversion δ∗M (2×n case)). With m = 2, Algorithm 2 (Möbius inversion δ∗M of d∗M )
can be performed with time complexity

O

(

16

3
n4

)

.

Proof. Substituting m = 2, C = 4, and #I2,n = O
(

1
24n

4
)

into

O(#Im,n2
CCmin{m,n})

from Theorem 6.3, we get the result.

Combining Theorem 6.5 and Corollary 6.6 with ∗ = ss, we get an overall cost of

O

(

2ω + 5

24
n4dω +

16

3
n4

)

for computing the interval-decomposable approximation δss(M) of M in the 2× n case.

Implementation. As part of the software “pmgap” [26], we provide an implementation of Algorithms 3 and 2
in the 2× n case. The software “pmgap” builds upon the GAP [27] package QPA [28], which provides data
structures and algorithms for computations on (quotients of) path algebras and their representations. The
software “pmgap” uses those data structures to represent equioriented commutative grids and persistence
modules over them, and implements the algorithms of this paper not in QPA.
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Randomly generated persistence modules. For the computational experiments below, given values for n and
d we randomly generate persistence modules V (with F2 coefficients) over the commutative grid

#–

G2,n, such
that all the vector spaces of V have dimension d.

Below, whenever we say to randomly generate a j × k F2-matrix M , we simply generate a matrix with
entries independently and uniformly sampled from F2. If required, it is also possible to randomly choose
a valid rank and then generate a random matrix with that rank. However, this comes at the cost of more
computation time to generate the random matrices.

We use the following procedure to randomly generate the persistence module V . First, we randomly
generate d× d F2-matrices for each of the solid arrows below:

• • · · · • •

◦ ◦ · · · ◦ •.

Then, for each square from right to left, we iteratively compute pullbacks (to guarantee commutativity)
and multiply with another random matrix (to reach the correct dimension d and to add more randomness).
That is, given d× d matrices representing the linear maps f and g as below:

Fd
2 Fd

2

Fk
2 Fd

2

Fd
2

f

φ1

φ2

g

φ3

φ1φ3

φ2φ3

,

we compute (matrices with respect to some some basis of) the pullback maps (φ1, φ2). Then, we randomly
generate a k × d matrix representing φ3, and obtain the commutative diagram

Fd
2 Fd

2

Fd
2 Fd

2.

f

φ1φ3

φ2φ3

g

It is clear that a persistence module V over
#–

G2,n is obtained by the above.

Computational experiments. We measure the time needed to compute the interval approximation using
pmgap for some small values of n and d. Computations were performed on Ubuntu 20.04.2 LTS running
in WSL1 inside a Windows 10 Pro machine with an AMD Ryzen 5 5600X 6-Core5 Processor. In Table 2,
we display the resulting runtimes in milliseconds. Each timing (each entry in the table) is measured as
the average of at least five runs. Each run consists of the computation of the compressed multiplicity and
interval approximation of a given persistence module. Additional runs are performed as needed so that the
total time taken exceeds 100 ms, to ensure reliable measurement of runtimes; this is only needed for the
smaller values of n and d. Note that we exclude the time taken for generating the underlying path algebra,
list of interval representations, and the persistence modules V .

For completeness, we also time the following operations: generation of the underlying path algebra and
its list of interval representations, generation of a random persistence module, computation of the interval
approximation. The results (of just one run each) are displayed in Table 3. Note that the underlying
path algebra and its list of interval representations do not depend on the dimension d. Thus, we time that
operation only once for each n.

5Note that the current implementation does not take advantage of multiple cores or threads.
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Table 2: Runtimes (in ms) for the interval approximation using pmgap

n
d

100 200 400 800

4 11.88 34.40 112.40 471.80
8 131.20 328.20 1,152.80 5,115.60
16 1,881.40 4,415.80 14,918.80 67,171.60

* Runtimes are measured as an average of at least five runs.
* Runtimes do not include time needed for generating the un-
derlying path algebra, list of interval representations, and
the persistence modules.

Table 3: Runtimes (in ms) in pmgap

operation n

algebra
and

its intervals

4 31.0
8 562.0
16 16,578.0

d 100.0 200.0 400.0 800.0
operation n

random
persistence
module

4 46.0 171.0 640.0 2594.0
8 94.0 375.0 1,422.0 5,516.0
16 219.0 781.0 3,047.0 12,609.0

interval
approximation

4 15.0 31.0 109.0 484.0
8 125.0 328.0 1,156.0 5,141.0
16 1,828.0 4,422.0 14,953.0 67,218.0

Demonstrations. The pmgap repository [26] contains demonstrations for these computations.
We also provide a browser-based implementation [29] demonstrating the computation of interval approx-

imation of randomly generated persistence modules. Note that the browser-based demo [29] was developed
separately of pmgap, and does not rely on the installation of pmgap.
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2 (4) (1964) 340–368.

[21] W. Lu, A. K. McBride, Algebraic structures on grothendieck groups, Department of Mathematics and Statistics, University
of Ottawa (2013).
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