
COMBINATORIAL LOCAL CONVEXITY IMPLIES CONVEXITY

IN FINITE DIMENSIONAL CAT(0) CUBED COMPLEXES
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Abstract. We give a proof of the following theorem, which is well-known among
experts: A connected subcomplex W of a finite dimensional CAT(0) cubed com-
plex X is convex if and only if Lk(v,W ) is a full subcomplex of Lk(v,X) for every
vertex v of W .

1. introduction

The purpose of this note is to give a proof of the following theorem, which is
well-known among experts.

Theorem 1.1. Let X be a finite dimensional CAT(0) cubed complex and W a
connected subcomplex of X. Then W is convex in X if and only if it satisfies the
condition (CLC) below:

(CLC) Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W .

Recall that a subcomplex K of a simplicial complex L is full if any simplex of
L whose vertices are in K is in fact entirely contained in K. The condition (CLC)
is nothing other than the definition for W to be “combinatorially locally convex”
in X, in the sense of Haglund-Wise [5, Definition 2.9] (cf. Haglund [4, Definitions
2.8 and 2.9]). (Their terminology does not contain the adjective combinatorial.) In
fact, they introduced the concept of a “combinatorial local isometry”, and define
W to be combinatorially locally convex in X if the inclusion map j : W → X is a
combinatorial local isometry. As (implicitly) suggested in [10], Theorem 1.1 is an
immediate consequence of [5, Lemma 2.11] concerning combinatorial local isometries
from cube complexes to finite dimensional non-positively curved cube complexes.

In [5, Proof of Lemma 2.11] appealing to [1, Proposition II.4.14] (which is deduced
from the classical Cartan-Hadamard theorem), it is implicitly assumed that a combi-
natorial local isometry is a local isometry in the usual sense (Definition 2.1(2)). On
the other hand, Haglund writes in [4, the paragraph preceding Theorem 2.13] that in
the finite dimensional case it can be checked that combinatorial local isometries are
precisely local isometries of the ℓ2 (Euclidean) metrics. Moreover, Petrunin notes
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in [10] that combinatorial local convexity implies local convexity and that this can
be proved the same way as the flag condition (Gromov’s link condition) for CAT(0)
spaces. Thus Theorem 1.1 is established by [5, Lemma 2.11], though we could not
find a reference that includes a proof of the implicit assertion.

The purpose of this note is to give a full proof of Theorem 1.1 by writing down
a proof of the assertion (Theorem 2.2). Our proof totally depends on Bridson-
Haefliger [1], and it may be regarded as a relative version of the proof of Gromov’s
link condition included in the book (see [1, Proofs of Theorems II.5.2 and II.5.20]).

The main bulk of this note was originally written as a part of [9]. After learning
from [10] that Theorem 1.1 is well-known among experts (as we had expected) and
that it is essentially contained in Haglund-Wise [5, Lemma 2.11], we decided to move
that part of [9] into this separate note. We hope this note is of some use to those
who are not so familiar with the relation between the two concepts concerning local
convexity.

We note that Theorem 1.1 may be regarded as a Euclidean metric version of
the combinatorial result by Haglund [4, Theorem 2.13], which shows that combi-
natorial convexity [4, Definition 2.9] is a local combinatorial property. However,
Theorem 1.1 is weaker than [4, Theorem 2.13], in the sense that the former assumes
finite dimensionality whereas the latter does not.

As is summarized in [8], local convexity implies (global) convexity in various
settings, including the following:

- closed connected subsets in a Euclidean space (Nakajima [6] and Tietze [11]),
- closed connected subsets (whose diameter is less than π/

√
κ when κ > 0)

in a complete CAT(κ) space (Bux-Witzel [2, Theorems 1.6 and 1.10] and
Ramos-Cuevas [8, Theorem 1.1]), and

- closed connected (by rectifiable arcs) subsets of proper Busemann spaces
(Papadopoulos [7, Proposition 8.3.3]).

The following well-known fact is the simplest non-trivial example of such results.

- A local geodesic in a CAT(κ) space (of length less than π/
√
κ when κ > 0)

is a geodesic [1, Proposition I.1.4(2)].

This fact is repeatedly (though implicitly) used in this note.

Acknowledgement. We thank Hirotaka Akiyoshi for his criticism and helpful
discussion. The second author is supported by JSPS KAKENHI Grant Number
JP20K03614 and by Osaka Central Advanced Mathematical Institute (MEXT Joint
Usage/Research Center on Mathematics and Theoretical Physics JPMXP0619217849).

2. Basic definitions and outline of the proof of Theorem 1.1

We first recall basic facts concerning non-positively curved spaces following Bridson-
Haefliger [1].
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Let X = (X, d) be a metric space. In this paper, we mean by a geodesic in X an
isometric embedding g : J → X where J is a connected subset of R. If J is a closed
interval, we call g a geodesic segment. We do not distinguish between a geodesic and
its image. X is a geodesic space if every pair of points can be joined by a geodesic
in X. It is said to be uniquely geodesic if for every pair of points there is a unique
geodesic joining them. For points a and b in a geodesic space X, we denote by [a, b]
a geodesic segment joining a and b. The symbols (a, b), [a, b) and (a, b] represent
open or half-open geodesic segments, respectively. The distance d(a, b) is equal to
ℓ([a, b]), the length of the geodesic segment [a, b]. Thus the geodesic space X is a
length space in the sense that the distance between two points is the infimum over
the lengths of rectifiable curves that join them [1, I.1.18 and I.3.1].

A geodesic space X is a CAT(0) space if any geodesic triangle is thinner than a
comparison triangle in the Euclidean plane E2, that is, the distance between any
points on a geodesic triangle is less than or equal to the corresponding points on a
comparison triangle [1, Definition II.1.1]. A CAT(0) space is uniquely geodesic [1,
Proposition II.1.4(1)]. A geodesic space X is said to be non-positively curved if it
is locally a CAT(0) space, i.e., for every x ∈ X there exists r > 0 such that the
open r-ball BX(x, r) := {y ∈ X | d(x, y) < r} in X with center x, endowed with the
induced metric, is a CAT(0) space [1, Definition II.1.2].

A cubed complex is a metric space X = (X, d) obtained from a disjoint union of

unit cubes X̂ =
⊔

λ∈Λ(I
nλ × {λ}) by gluing their faces through isometries. To be

precise, it is an Mκ-polyhedral complex with κ = 0 in the sense of [1, Definition
I.7.37] that is made up of Euclidean unit cubes, i.e., the set Shapes(X) in the
definition consists of Euclidean unit cubes. (See [1, Example (I.7.40)(4)].) The
metric d on X is the length metric induced from the Euclidean metric of the unit
cubes. See [1, I.7.38] for a precise definition. Every finite dimensional cubed complex
is a complete geodesic space [1, Theorem in p.97 or I.7.33], where the dimension
of the cubed complex is defined to be max{nλ}. Note that the restriction of the

projection p : X̂ → X to Inλ×{λ} is not necessarily injective. Thus a cubed complex
is not necessarily a cube complex in the sense of [4, 5]. However, the difference is
not essential, because the cubical subdivision of a cubed complex (cf. [4, p.174]) is a
cube complex, and the metrics of the cubed complex and its cubical decomposition
(after rescaling) are identical (cf. [1, Lemma I.7.48]).

Two non-trivial geodesics issuing from a point x ∈ X are said to define the same
direction if the Alexandrov angle between them is zero. This defines an equivalence
relation on the set of non-trivial geodesics issuing from x, and the Alexandrov angle
induces a metric on the set of the equivalence classes. The resulting metric space is
called the space of directions at x and denoted Sx(X) [1, Definition II.3.18].

Suppose x is a vertex v of the cubed complex X. Then the space Sv(X) is
obtained by gluing the spaces {Svλ(I

nλ × {λ})}vλ∈p−1(v). Here Svλ(I
nλ × {λ}) is

the space of directions in the cube Inλ × {λ} at the vertex vλ; so it is an all-right
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spherical simplex, a geodesic simplex in the unit sphere Snλ−1 all of whose edges have
length π/2. Hence Sv(X) has a structure of a finite dimensional all-right spherical
complex, namely an Mκ-polyhedral complex with κ = 1 in the sense of [1, Definition
I.7.37] that is made up of all-right spherical simplices, i.e., the set Shapes(X) in
the definition consists of all-right spherical simplices. This complex is called the
geometric link of v in X, and is denoted by Lk(v,X) [1, (I.7.38)]. It is endowed
with the length metric dLk(v,X) induced from the spherical metrics of the all-right
spherical simplices. Let dπLk(v,X) be the metric defined by

dπLk(v,X)(u1, u2) := min{dLk(v,X)(u1, u2), π}.

Then the metric dSv(X) on Sv(X) = Lk(v,X) is equal to the metric dπLk(v,X) (see [1,

the second sentence in p.191] or [9, Lemma 5.5]).

Definition 2.1. Let X be a uniquely geodesic space and W a subset of X.
(1) W is convex in X if, for any distinct points a and b in W , the unique geodesic

segment [a, b] in X is contained in W .
(2) W is locally convex in X if, for every x ∈ W , there is an ϵ > 0 such that

W ∩BX(x, ϵ) is convex in X, where BX(x, ϵ) is the open ϵ-ball in X with center x.
(3) Assume that X is a cubed complex and W is a subcomplex of X. Then W

is combinatorially locally convex in X if it satisfies the the condition (CLC), i.e.,
Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W .

In the next section, we prove the following theorem.

Theorem 2.2. Let X be a finite dimensional CAT(0) cubed complex and W a
subcomplex of X. Then W is locally convex in X if and only if it is combinatorially
locally convex in X.

In the reminder of this section, we give a proof of Theorem 1.1 by using the above
theorem and following [5, the proof of Lemma 2.11]. The starting point of the proof
is the following version of the Cartan-Hadamard theorem.

Proposition 2.3. [1, Special case of Theorem II.4.1(2)] Let X be a complete, con-

nected, geodesic space. If X is non-positively curved, then the universal covering X̃
(with the induced length metric) is a CAT(0) space.

See [1, Definition I.3.24] for the definition of the induced length metric on X̃.
The Cartan-Hadamard theorem implies the following result [1, Proposition II.4.14],
which plays an essential role in [5, Proof of Lemma 2.11] and so in the proof of
Theorem 1.1.

Proposition 2.4. [1, Proposition II.4.14] Let X and Y be a complete, connected
metric space. Suppose that X is non-positively curved and that Y is locally a length
space. If there is a map f : Y → X that is locally an isometric embedding, then Y
is non-positively curved and:
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(1) For every y0 ∈ Y , the homomorphism f∗ : π1(Y, y0) → π1(X, f(y0)) induced by
f is injective.

(2) Consider the universal coverings X̃ and Ỹ with their induced length metrics.

Every continuous lifting f̃ : Ỹ → X̃ of f is an isometric embedding.

In the above proposition, f : Y → X being locally an isometric embedding means
that, for every y ∈ Y , there is an ϵ > 0 such that the restriction of f to the open
ϵ-ball BY (y, ϵ) in Y is an isometry onto its image in X [1, the sentence preceding
Proposition II.4.14].

We now give a proof of Theorem 1.1 following [5, Proof of Lemma 2.11] and
assuming Theorem 2.2.

Proof of Theorem 1.1. Let X be a finite dimensional CAT(0) cubed complex and W
a connected subcomplex of X. Suppose W is combinatorially locally convex. Then
W is locally convex by Theorem 2.2.

Claim 2.5. The inclusion map j : W → X, regarded as a map between cubed
complexes, is locally an isometric embedding, namely, for every x ∈ W , there is an
ϵ > 0 such that the restriction of j to the open ϵ-ball BW (x, ϵ) in W (with respect to
the metric dW of the cubed complex W ) is an isometry onto its image in the cubed
complex X.

Proof. Let ϵ > 0 be such that W ∩ BX(x, ϵ) is convex in X. Then for any a, b ∈
W∩BX(x, ϵ), the geodesic [a, b] inX is contained inW∩BX(x, ϵ). By the definitions
of dX and dW as length metrics induced from the Euclidean metrics of the unit
cubes, we see that [a, b] is also a geodesic in W and dX(a, b) = dW (a, b). Hence
the restriction of j : W → X to the subspace W ∩ BX(x, ϵ) ⊂ W is an isometry
onto its image W ∩ BX(x, ϵ) ⊂ X. The above observation also implies that W ∩
BX(x, ϵ) ⊂ BW (x, ϵ). Since BW (x, ϵ) ⊂ W ∩ BX(x, ϵ) obviously holds, we have
W ∩ BX(x, ϵ) = BW (x, ϵ). Hence, the restriction of j : W → X to the subspace
BW (x, ϵ) ⊂ W is an isometry onto its image in X. □

Since bothX andW are complete [1, Theorem in p.97 or I.7.33] and since (W,dW )
is a length metric space, Claim 2.5 enables us to apply Proposition 2.4 ([1, Propo-
sition II.4.14]) to j : W → X, and so the following hold.

(0) W is non-positively curved.
(1) j∗ : π1(W ) → π1(X) is injective.

(2) Consider the universal coverings X̃ and W̃ with their induced length metrics.

Every continuous lifting j̃ : W̃ → X̃ of j is an isometric embedding.

Since X is a CAT(0) space, π1(X) = 1 and so π1(W ) = 1 by the conclusion (1).

Thus W = W̃ and it is a CAT(0) space by the conclusion (0) and the Cartan-
Hadamard theorem (Proposition 2.3). Hence, by the conclusion (2), j : W → X

is an isometric embedding of the cubed complex W = W̃ into the cubed complex
5



X = X̃. Thus, for any a, b ∈ W , the unique geodesic [a, b] in the CAT(0) space W
is also a geodesic in X. This means that W = j(W ) is convex in X, completing the
proof of the if part.

The only if part immediately follows from the only if part of Theorem 2.2. □

Remark 2.6. (1) In [1, Proof of Proposition II.4.14], the proof of the assertion
that Y is non-positively curved is rather involved, because it only assumes that the
complete metric space Y is locally a length space. However, in our setting Y = W
is a connected subcomplex of the CAT(0) cubed complex which is combinatorially
locally convex. So, the assertion in our setting is an immediate consequence of
Gromov’s link condition [1, Theorem II.5.20] (cf. Lemma 3.4(2)).

(2) If we appeal to the relatively new results by Bux-Witzel [2, Theorems 1.6 and
1.10] and Ramos-Cuevas [8, Theorem 1.1], which in particular imply that a closed
connected subset of a complete CAT(0) space is convex if and only if it is locally
convex, then Theorem 1.1 immediately follows from Claim 2.5.

3. Proof of Theorem 2.2

We begin by recalling basic properties of CAT(1) spaces. A metric space L =
(L, d) is a CAT(1) space if it is a geodesic space all of whose geodesic triangles of
perimeter less than 2π are not thicker than its comparison triangle in the 2-sphere
S2 [1, Definition II.1.1].

Proposition 3.1. (1) ([1, Theorem II.5.4]) Any CAT(1) space is uniquely π-geodesic,
namely, for any points a and b of the space with d(a, b) < π, there is a unique geo-
desic [a, b] joining a to b.

(2) ([1, Theorem II.5.18]) A finite dimensional all-right angled spherical complex
is CAT(1) if and only if it is a flag complex.

Recall that a flag complex is a simplicial complex in which every finite set of
vertices that is pairwise joined by an edge spans a simplex.

Definition 3.2. ([1, Definition I.5.6]) For a metric space Y = (Y, dY ), the 0-cone
(or the Euclidean cone) C0(Y ) over Y is the metric space defined as follows. As
a set C0(Y ) is obtained from [0,∞) × Y by collapsing 0 × Y into a point. The
equivalence class of (t, y) is denoted by ty, where the class of (0, y) is denoted by 0
and is called the cone point. The distance d(ty, t′y′) between two points ty and t′y′

in C0(Y ) is defined by the identity

d(ty, t′y′)2 = t2 + t′
2 − 2tt′ cos(dπY (y, y

′)),

where dπY (y, y
′) = min{dY (y, y′), π}.

For a vertex v in a cubed complex X, we denote the 0-cone C0(Lk(v,X)) by
Tv(X) and call it the tangent cone at v [1, Definition II.3.18].
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We have the following fundamental relation between CAT(0) spaces and CAT(1)
spaces, where the second statement (Gromov’s link condition) is proved by using
the first statement (Berestovskii’s theorem).

Proposition 3.3. (1) (Berestovskii [1, Theorem II.3.14]) Let Y = (Y, dY ) be a
metric space. Then the 0-cone C0(Y ) over Y is a CAT(0) space if and only if Y is
a CAT(1) space.

(2) (Gromov’s link condition) [1, Theorem II.5.20] A finite dimensional cubed
complex X is non-positively curved if and only if, for every vertex v ∈ X, the
geometric link Lk(v,X) is a CAT(1) space.

The following lemma is a simple consequence of the above results.

Lemma 3.4. Let X be a finite dimensional CAT(0) cubed complex and W a con-
nected subcomplex of X. Then the following hold.

(1) For a vertex v of W , if Lk(v,W ) is a full subcomplex of Lk(v,X) then the
tangent cone Tv(W ) is a CAT(0) space.

(2) If Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W , then the
cubed complex W is non-positively curved.

Proof. (1) Since X is a CAT(0) cubed complex, Lk(v,X) is a flag complex by Propo-
sition 3.3(2). If Lk(v,W ) is a full subcomplex of Lk(v,X), then Lk(v,W ) is also a
flag complex. So, the all-right spherical complex Lk(v,W ) is CAT(1) by Proposi-
tion 3.1(2). Hence, Tv(W ) is a CAT(0) space by Proposition 3.3(1).

(2) is proved by a similar argument by using Proposition 3.3(2) instead of Propo-
sition 3.3(1) in the last step. □

Next, we prove the following key lemma for the proof of Theorem 2.2.

Lemma 3.5. Let L = (L, d) be a finite dimensional all-right spherical complex that
is a flag complex, and let K be a subcomplex of L. Then the following conditions
are equivalent.

(1) K is π-convex in L, namely, for any points a and b of K with d(a, b) < π, the
unique geodesic segment [a, b] in L is contained in K.

(2) K is a full subcomplex of L.

Proof. We first prove that (1) implies (2). Suppose that K is not full in L. Then
there is a simplex σ of L\K such that ∂σ is contained in K. Pick a vertex v of σ,
and let τ be the codimension 1 face of σ that does not contain the vertex v. Pick
a point y in the interior of τ . Then d(v, y) = π/2 and the interior of the geodesic
segment [v, y] is contained in the interior of σ. Thus [v, y] is not contained in K
though both v and y are contained in K. Hence K is not π-convex.

We next prove that (2) implies (1). Suppose to the contrary that K is not π-
convex though K is a full subcomplex of L. Then there is a geodesic segment [a, b]
in L of length < π such that a, b ∈ K but [a, b] ̸⊂ K. If necessary, by replacing
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[a, b] with a sub geodesic segment, we may assume K ∩ [a, b] = {a, b}. Let σ be
the simplex of L whose interior intersects the germ of [a, b] at a. Then σ is not
a simplex of K. Since K is a full subcomplex of L by the assumption, there is a
vertex v of σ that is not contained in K. Let St(v, L) (resp. st(v, L)) be the closed
star (resp. open star) of v in L, i.e., the union of the simplices (resp. the interior of
the simplices) of L that contain v. Note that St(v, L) = st(v, L) ⊔ lk(v, L), where
lk(v, L) is the simplicial link of v in L, i.e., the union of the simplices τ of L such
that v /∈ τ and {v} ∪ τ is contained in a simplex of L. Then st(v, L) ∩K = ∅ and
therefore there is a point b′ ∈ (a, b] such that b′ ∈ lk(v, L) and (a, b′) ⊂ st(v, L).

Case 1. v ∈ (a, b′). Then d(v, a) = d(v, b′) = π/2 and hence d(a, b) ≥ d(a, b′) =
d(a, v) + d(v, b′) = π, a contradiction.

Case 2. v /∈ (a, b′). We consider the “development” of [a, b′] ⊂ St(v, L) in the
northern hemisphere S2

+, the closed ball of radius π/2 centered at the north pole
N = (0, 0, 1) in S2, that is defined as follows (cf. [1, Definition I.7.17]). Let a =
y0, y1, · · · , yn = b′ be points lying in [a, b′] in this order, such that (yi−1, yi) is
contained in the interior of a simplex σ(i) of L for each i (1 ≤ i ≤ n). Note
that σ(i) contains v as a vertex. Let ȳ0 = (1, 0, 0), ȳ1, · · · , ȳn be the points in S2

+

satisfying the following conditions.

(1) dS2(N, ȳi) = dσ(i)(v, yi) = d(v, yi) and dS2(ȳi−1, ȳi) = dσ(i)(yi−1, yi) =
d(yi−1, yi) for each i.

(2) If N, ȳi−1, ȳi are not aligned, the initial vectors of the geodesic segments
[N, ȳi−1] and [N, ȳi] in S2

+ occur in the order of a fixed orientation of S2.

We call the union γ := ∪n
i=1[ȳi−1, ȳi] ⊂ S2

+ the development of [a, b′] ⊂ St(v, L) in
S2
+. It should be noted that n ≥ 2 and ȳ1, · · · , ȳn−1 are contained in intS2

+.

Claim 3.6. γ is a local geodesic in S2.

Proof. Though this is used without proof in [1, the 4th paragraph in the proof of
Theorem II.5.18], we give a proof for completeness. If γ is not a local geodesic, then
ℓ([ȳi−1, ȳi] ∪ [ȳi, ȳi+1]) > ℓ([ȳi−1, ȳi+1]) for some i. Let ȳ′i be the intersection of the
geodesic segment [ȳi−1, ȳi+1] and the maximal geodesic segment in S2

+ emanating
from N and passing through ȳi. Let y

′
i be the point in the maximal geodesic segment

in σ(i)∩σ(i+1) ⊂ L emanating from v and passing through yi, such that d(v, y′i) =
dS2(N, ȳ′i). Then we have the following isometries among spherical triangles.

∆(v, yi−1, y
′
i)
∼= ∆(N, ȳi−1, ȳ

′
i), ∆(v, y′i, yi+1) ∼= ∆(N, ȳ′i, ȳi+1)

Hence the following hold.

ℓ([yi−1, y
′
i] ∪ [y′i, yi+1]) = ℓ([ȳi−1, ȳ

′
i] ∪ [ȳ′i, ȳi+1])

= ℓ([ȳi−1, ȳi+1])

< ℓ([ȳi−1, ȳi] ∪ [ȳi, ȳi+1])

= ℓ([yi−1, yi] ∪ [yi, yi+1]) = ℓ([yi−1, yi+1])
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This contradicts the fact that [yi−1, yi+1](⊂ [a, b′] ⊂ [a, b]) is a geodesic. □
Since γ is a local geodesic with length ℓ(γ) < π, it is a geodesic in S2

+ by [1,
Proposition II.1.4(2)]. Since yn = b′ ∈ lk(v, L), we see d(v, yn) = π/2 and so
ȳn ∈ ∂S2

+. Thus the endpoints ȳ0 and ȳn of the geodesic γ ⊂ S2
+ are contained

in ∂S2
+. Since ℓ(γ) < π, this implies γ ⊂ ∂S2

+. This contradicts the fact that
ȳ1, · · · , ȳn−1 are contained in intS2

+. This completes the proof of Lemma 3.5. □
In addition to Lemma 3.5, we need Lemma 3.8 below which gives relative versions

of two results included in [1] concerning the local shape of polyhedral complexes.

Notation 3.7. For a vertex v of a subcomplex W of a cubed complex X, the symbol
j : Tv(W ) → Tv(X) denotes the natural injective map from the tangent cone Tv(W )
of the cubed complex W into the tangent cone Tv(X) of the cubed complex X. Note
that j is not necessarily an isometric embedding.

Lemma 3.8. Let X be a finite dimensional cubed complex and W a subcomplex of
X. Then the following hold.

(1) (Relative version of [1, Theorem I.7.39]) Let v be a vertex of W . Then
there is a natural isometry φ from the open ball BX(v, 1/2) in X onto the open
ball BTv(X)(0, 1/2) in the tangent cone Tv(X) that carries W ∩ BX(v, 1/2) onto
j(Tv(W )) ∩BTv(X)(0, 1/2).

(2) (Relative version of [1, Lemma I.7.56]) Let x and y be points of W contained
in the same open cell of W . Then, for sufficiently small ϵ > 0, there exists a natural
isometry between the open balls BX(x, ϵ) and BX(y, ϵ) in X that carries W∩BX(x, ϵ)
onto W ∩BX(y, ϵ).

Proof. (1) By [1, Theorem I.7.39], there is a natural isometry from BX(v, 1/2) onto
BTv(X)(0, 1/2). (The radius 1/2 is the half of the length 1 of the unit interval I,
and it corresponds to ε(x)/2 in [1, Theorem I.7.39].) The isometry is defined as
follows (see [1, the first paragraph in the proof of Theorem I.7.16 in p.104]). If
x ∈ BX(v, 1/2) then there is a direction u ∈ Lk(v,X) such that x is a distance
t < 1/2 along the geodesic issuing from v in the direction u. (Here u is uniquely
determined by x except when x = v, i.e., t = 0.) Then x ∈ BX(v, 1/2) is mapped
to the point tu ∈ BTv(X)(0, 1/2). By this definition of the isometry, we see that it
carries W ∩BX(v, 1/2) onto j(Tv(W )) ∩BTv(X)(0, 1/2).

(2) By [1, Lemma I.7.56], there is a natural isometry from BX(x, ϵ) onto BX(y, ϵ)
that restricts to an isometry from C ∩ BX(x, ϵ) onto C ∩ BX(y, ϵ) for every closed
cell C of X containing x and y. Obviously the isometry carries W ∩ BX(x, ϵ) onto
W ∩BX(y, ϵ). □

We now give a proof of the main Theorem 2.2.

Proof of Theorem 2.2. Let X be a finite dimensional CAT(0) cubed complex and
W a subcomplex of X. Assume that W is combinatorially locally convex in X, i.e.,
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Lk(v,W ) is a full subcomplex of Lk(v,X) for every vertex v of W . Then we have
the following claim.

Claim 3.9. For any vertex v of W , the map j : Tv(W ) → Tv(X) is an isometric
embedding, and j(Tv(W )) is convex in Tv(X).

Proof. Let v be a vertex ofW . Then, by the assumption and Lemma 3.5, Lk(v,W ) is
π-convex in Lk(v,X). This implies that the distance function dπLk(v,W ) on Lk(v,W ) is

equal to the restriction of the distance function dπLk(v,X) on Lk(v,X) to the subspace

Lk(v,W ). Hence j : Tv(W ) → Tv(X) is an isometric embedding. On the other hand,
Tv(W ) is a CAT(0) space by Lemma 3.4(1). Hence, any two points of Tv(W ) are
joined by a unique geodesic in the metric space Tv(W ). Its image in Tv(X) is also
a geodesic in the metric space Tv(X), because j : Tv(W ) → Tv(X) is an isometric
embedding. Hence j(Tv(W )) is convex in Tv(X) as desired. □

Now let x be an arbitrary point in W . Pick a vertex v of the open cell of W
that contains x. Then, by Lemma 3.8(2), we can find a small real ϵ > 0 and
x′ ∈ BX(v, 1/2) with BX(x′, ϵ) ⊂ BX(v, 1/2), such that (BX(x, ϵ),W ∩ BX(x, ϵ))
is isometric to (BX(x′, ϵ),W ∩ BX(x′, ϵ)). Recall the following isometry given by
Lemma 3.8(1).

φ : (BX(v, 1/2),W ∩BX(v, 1/2)) → (BTv(X)(0, 1/2), j(Tv(W )) ∩BTv(X)(0, 1/2))

Since BX(x′, ϵ) ⊂ BX(v, 1/2), we have the following identities.

φ(BX(x′, ϵ)) = BTv(X)(φ(x
′), ϵ),

φ(W ∩BX(x′, ϵ)) = j(Tv(W )) ∩BTv(X)(φ(x
′), ϵ).

Since j(Tv(W )) is convex in Tv(X) by Claim 3.9 and since BTv(X)(φ(x
′), ϵ) is convex

in the CAT(0) space Tv(X) by [1, Proposition II.1.4(3)], these identities imply that
φ(W ∩ BX(x′, ϵ)) is convex in the convex subset BTv(X)(φ(x

′), ϵ) of Tv(X). Since
we have the isometries

(BX(x, ϵ),W ∩BX(x, ϵ)) ∼= (BX(x′, ϵ),W ∩BX(x′, ϵ))

∼= (φ(BX(x′, ϵ)), φ(W ∩BX(x′, ϵ))),

this in turn implies that W ∩ BX(x, ϵ) is convex in the convex subset BX(x, ϵ) of
X. Hence W ∩BX(x, ϵ) is convex in X, completing the proof of the only if part of
Theorem 2.2.

Though the if part of Theorem 2.2 may be trivial, we include a proof for complete-
ness. Suppose that Lk(v,W ) is not a full subcomplex of Lk(v,X). Then Lk(v,W )
is not π-convex by Lemma 3.5, and so there is a geodesic segment [a, b] in Lk(v,X)
such that [a, b] ∩ Lk(v,W ) = {a, b}. Pick a small t > 0 so that the geodesic [ta, tb]
in Tv(X) is contained in the open ball BTv(X)(0, 1/2). (In fact, any positive t < 1/2
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works.) Since the geodesic [ta, tb] intersects j(Tv(W )) only at the endpoints, the in-
verse image of [ta, tb] by the isometry φ in Lemma 3.8(1) is a geodesic in BX(v, 1/2)
that intersects W only at the endpoints. Hence W is not locally convex. □
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[11] H. Tietze, Über Konvexheit im kleinen und im großen und über gewisse den Punkten einer
Menge zugeordnete Dimensionaszahlen, Math. Z. 28 (1928), 679–707.

Gifu Higashi High School, 4-17-1, noisshiki, Gifu City 500-8765, Japan
E-mail address: shunsuke463@gmail.com

Advanced Mathematical Institute, Osaka Metropolitan University, 3-3-138, Sugi-
moto, Sumiyoshi, Osaka City 558-8585, Japan

Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-
Hiroshima, 739-8526, Japan

E-mail address: sakuma@hiroshima-u.ac.jp

11


