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Abstract. In 1995, C.-L. Terng associated to each hyperpolar action on a com-
pact symmetric space, a hyperpolar proper Fredholm (PF) action on a Hilbert
space. This is a group action by an infinite dimensional path group and it acts on
a Hilbert space via the gauge transformations. Those two hyperpolar actions are
related through an equivariant Riemannian submersion called the parallel trans-
port map and they have close relations to the infinite dimensional symmetric
spaces called affine Kac-Moody symmetric spaces. In this paper we define a linear
isomorphism between Hilbert spaces and show that it is equivariant with respect
to the gauge transformations and is compatible with the parallel transport map.
Using this isomorphism we extend and unify all known computational results of
principal curvatures of PF submanifolds in Hilbert spaces. Especially we study
the submanifold geometry of orbits of hyperpolar PF actions associated to sigma-
actions and give new examples of austere PF submanifolds in Hilbert spaces.
Moreover we show that the isomorphism between Hilbert spaces given here corre-
sponds to a natural isomorphism between affine Kac-Moody symmetric spaces of
group type.

1. Introduction

An isometric action of a compact Lie group on a Riemannian manifold M is called
polar if there exists a closed connected submanifold Σ of M which meets every orbit
and is orthogonal to the orbits at every point of intersection. Such a Σ is called a
section, that is automatically totally geodesic in M . If Σ is also flat in the induced
metric then the action is called hyperpolar ([12]).

If M is a Euclidean space then hyperpolar actions are essentially the isotropy
representations of symmetric spaces. More precisely, let U/L be a symmetric space
of compact type with canonical decomposition u = l+p. The adjoint representation
of L on p is called the isotropy representation of U/L. It follows that the isotropy
representation is hyperpolar where any maximal abelian subspace in p is a section.
Conversely it was shown that any hyperpolar representation on a Euclidean space
is orbit equivalent to the isotropy representation of a symmetric space ([4, 5]). Here
two isometric actions are called orbit equivalent if their orbits are identified via a
suitable isometry.

If M = G/K is a symmetric spaces of compact type, important examples of hy-
perpolar actions are Hermann actions, that is, the actions by symmetric subgroups
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of G ([13, 14]). Here a closed subgroup H of G is called symmetric if there exists an
involutive automorphism θ of G which satisfies Gθ

0 ⊂ H ⊂ Gθ, where Gθ denotes the
fixed point subgroup and Gθ

0 its identity component. It was shown that any inde-
composable hyperpolar actions of cohomogeneity grater than one is orbit equivalent
to a Hermann action ([22, 23]). Note that the associated action of H × K on G
defined by (b, c) · a = bac−1 is also hyperpolar ([12]).

A special class of Hermann actions is given by sigma-actions ([3]). Let G be
a connected compact semisimple Lie group and σ an automorphism of G. Then
G(σ) := {(b, σ(b)) | b ∈ G} is a symmetric subgroup of G × G with involution
(b, c) 7→ (σ−1(c), σ(b)). The G(σ)-action on G defined by (b, σ(b)) · a = baσ(b)−1 is
called a σ-action. This can be regarded as a Hermann action by identifying G with
the symmetric space (G×G)/∆G where ∆G denotes the diagonal. The G(σ)-orbit
through the identity is also called the Cartan embedding associated to (G, σ).

It is an interesting problem to study the submanifold geometry of orbits of hy-
perpolar actions. The principal orbits of polar representations are isoparametric
submanifolds in the sense of Terng [38]. Thorbergsson [42] conversely showed that
an irreducible compact full isoparametric submanifold of a Euclidean space with
codimension at least 3 is an orbit of a polar representation. These results were ex-
tended to the case of hyperpolar actions on compact symmetric spaces and equifocal
submanifolds of symmetric spaces ([41, 2]). Hirohashi, Song, Takagi and Tasaki [15]
studied the submanifold geometry of orbits of the isotropy representations of sym-
metric spaces and showed that in each strata of the stratification of orbit types there
exists a unique orbit which is a minimal submanifold of the standard sphere. Ikawa
[16] extended this result to the case of Hermann actions with commuting involutions.
Many geometers have studied orbits of hyperpolar actions and shown various kinds
of examples of homogeneous submanifolds.

It is also interesting to study hyperpolar actions in infinite dimensions.
Palais and Terng [32, 39] introduced a suitable class of isometric actions on Hilbert

spaces, namely proper Fredholm (PF) actions, and showed examples of hyperpolar
PF actions which are orbits of the gauge transformations. These examples were
later extended by Pinkall and Thorbergsson [33] and reformulated by Terng [40] as
follows. Let G be a connected compact Lie group with a bi-invariant metric. Denote
by G = H1([0, 1], G) the path group of all Sobolev H1-paths from [0, 1] to G and by
Vg = H0([0, 1], g) the Hilbert space of all H0-paths from [0, 1] to the Lie algebra g
of G. Let G act on Vg by the affine isometry:

g ∗ u = gug−1 − g′g−1,

where g ∈ G and u ∈ Vg. For any closed subgroup L of G×G the subgroup

P (G,L) = {g ∈ G | (g(0), g(1)) ∈ L}

acts on Vg by the same formula. It was shown that the P (G,L)-action is PF and
that if the L-action on G defined by (b, c) ·a = bac−1 is hyperpolar then the P (G,L)-
action on Vg is also hyperpolar. Applying this result to the examples of hyperpolar
actions on G she showed that P (G,H × K)-actions and P (G,G(σ))-actions asso-
ciated to Hermann actions and σ-actions respectively are hyperpolar. (Palais and
Terng [32, 39] considered the case σ = id. Pinkall and Thorbergsson [33] considered
the case H = K.) Note that all orbits of P (G,L)-actions are proper Fredholm (PF)
submanifolds of the Hilbert space Vg ([32, 39]). There are many interesting examples
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of PF submanifolds which are orbits of hyperpolar P (G,L)-actions (see, for example
[39, 40, 41, 25, 26]).

It should be also noted that there is a class of infinite dimensional symmetric
spaces closely related to hyperpolar PF actions. Recall that in the finite dimen-
sional case hyperpolar representations are essentially the isotropy representations of
symmetric spaces. Terng [40] conjectured that there is an analogous result in infinite
dimensions and showed that P (G,G(σ))-actions are essentially the adjoint actions
of affine Kac-Moody groups. Later Heintze, Palais, Terng and Thorbergsson [12]
studied involutions of affine Kac-Moody algebras and showed that P (G,H × K)-
actions associated to Hermann actions are essentially the isotropy representations
of infinite dimensional symmetric spaces induced by those involutions. However
they did not give a precise definition of those symmetric spaces due to functional
analytic difficulties inherent in affine Kac-Moody groups. Afterward Heintze and
Popescu [10, 34] started to study those symmetric spaces in the category of tame
Fréchet manifolds ([8]) and showed their fundamental properties. Nowadays they
are called affine Kac-Moody symmetric spaces and known as the closest infinite di-
mensional analogue of finite dimensional symmetric spaces ([6]). According to the
theory of those symmetric spaces their isotropy representations (restricted to ap-
propriate subspaces) are essentially equivalent to P (G,H × K)-actions associated
to Hermann actions. In particular those of group type are affine Kac-Moody groups
and their isotropy representations are essentially equivalent to P (G,G(σ))-actions.

In the study of P (G,L)-actions in general, it is important to consider an equivari-
ant Riemannian submersion Φ : Vg → G, called the parallel transport map. It was
shown that each orbit of the P (G,L)-action is the inverse image of an L-orbit under
Φ. More generally, if N is a closed submanifold of G then its inverse image Φ−1(N) is
a PF submanifold of Vg. For a given compact symmetric space G/K with projection
π : G→ G/K we consider the composition ΦK := π ◦ Φ : Vg → G→ G/K which is
also an equivariant Riemannian submersion called the parallel transport map over
G/K. Similarly, if N is a closed submanifold of G/K then its inverse image Φ−1

K (N)
is a PF submanifold of Vg. In particular, if N is an orbit of the H-action then
Φ−1
K (N) is an orbit of the P (G,H ×K)-action. The parallel transport map ΦK is

also known as a useful tool to study the submanifold geometry in symmetric spaces
([41]).

In [28] the author gave a formula for the principal curvatures of the PF submani-
fold Φ−1

K (N) for a curvature-adapted submanifold N of G/K (see also [21, 25]) and
showed an explicit formula for the principal curvatures of orbits of P (G,H × K)-
actions associated to Hermann actions. Using this formula he studied conditions
for those orbits to be austere PF submanifolds of Vg. Here a submanifold is called
austere ([9]) if for each normal vector ξ the set of principal curvatures with multi-
plicities in the direction of ξ is invariant under the multiplication by (−1). Thus
austere submanifolds are minimal submanifolds. He considered two conditions:

(A) The orbit N = H · (expw)K is an austere submanifold of G/K.
(B) The orbit Φ−1

K (N) = P (G,H ×K) ∗ ŵ is an austere PF submanifold of Vg.

Here ŵ denotes the constant path with value w ∈ g. Let θK and θH denote the invo-
lutions of G associated to the symmetric subgroups K and H respectively. Denote
by g = k + m and g = h + p the corresponding canonical decompositions. Take a
maximal abelian subspace t in m∩p and write ∆(θK , θH) for the corresponding root
system of t. He showed:
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Theorem ([28]).

(i) If ∆(θK , θH) is a reduced root system then (A) and (B) are equivalent.
(ii) If θK = θH then (A) and (B) are equivalent.
(iii) If θK ◦ θH = θH ◦ θK then (A) implies (B).
(iv) If G is simple then (A) implies (B).

Here (B) does not imply (A) in the cases (iii) and (iv). In fact, there exists a
counterexample.

Applying these results to the examples of austere orbits of Hermann actions he
showed many examples of austere PF submanifolds which are orbits of hyperpolar
P (G,H ×K)-actions.

The main purpose of this paper is to extend those results to the case of P (G,G(σ))-
actions. Notice that although the σ-action is a special case of a Hermann action, we
can not apply the previous results directly to the present case because G(σ) is not
the product of two symmetric subgroups of G. In this paper we introduce an injec-
tive homomorphism Ω : H1([0, 1], G)→ H1([0, 1], G×G) and a linear isomorphism
Υ : H0([0, 1], g)→ H0([0, 1], g⊕ g), and show (Theorem 3.2 and Corollary 3.3):

Theorem I.

(i) The P (G,L)-action on Vg is conjugate to the P (G × G,L × ∆G)-action
on Vg⊕g via Ω and Υ, that is, Ω maps P (G,L) isomorphically onto P (G×
G,L×∆G) and Υ(g∗u) = Ω(g)∗Υ(u) holds for g ∈ P (G,L) and u ∈ Vg. In
particular the P (G,G(σ))-action on Vg is conjugate to the P (G×G,G(σ)×
∆G)-action on Vg⊕g via Ω and Υ.

(ii) The following diagram commutes:

Vg
Υ−−−→ Vg⊕g

Φ

y Φ∆G

y
G

φ←−−− (G×G)/∆G ,

where Φ∆G : Vg⊕g → G × G → (G × G)/∆G denotes the parallel transport
map over (G×G)/∆G and φ the isomorphism (a, b) 7→ ab−1.

The property (i) allows us to apply the general results of P (G,H × K)-actions to
P (G,G(σ))-actions. Note that the case σ = id was essentially observed by Pinkall
and Thorbergsson [33, p. 283]. The property (ii) means that Υ is natural in the
framework of parallel transport maps. It allows us to apply the general results of
ΦK to Φ.

Using Theorem I we derive a formula for the principal curvatures of the PF sub-
manifold Φ−1(N) for a curvature-adapted submanifold N of G (Theorem 4.1) and a
formula for the principal curvatures of orbits of P (G,G(σ))-actions (Theorem 6.1).
These formulas generalize the results by King-Terng [20] in the case of fibers and
by Palais-Terng [32, 39] in the case of σ = id. Consequently we unify all known
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computational results of principal curvatures of PF submanifolds as follows:

Fiber Φ−1
K (aK)

(The author [25])
Theorem I

=⇒ Fiber Φ−1(a)
(King-Terng [20])

=
⇒

=
⇒N = {aK} N = {a}

PF submanifold Φ−1
K (N)

(Koike [21], the author [25, 28])
Theorem I

=⇒ PF submanifold Φ−1(N)
(Theorem 4.1 of this paper)

=⇒ =⇒N = H · (expw)K N = G(σ) · expw

Orbit P (G,H ×K) ∗ ŵ
(The author [28])

Theorem I
=⇒ Orbit P (G,G(σ)) ∗ ŵ

(Theorem 6.1 of this paper)

=⇒ =⇒H = K σ = id

Orbit P (G,K ×K) ∗ ŵ
(Pinkall-Thorbergsson [33])

Theorem I
=⇒ Orbit P (G,∆G) ∗ ŵ

(Palais-Terng [32, 39]).

Based on those results we study the relation between the following two conditions
on the austere property of orbits:

(a) The orbit N = G(σ) · expw is an austere submanifold of G.
(b) The orbit Φ−1(N) = P (G,G(σ)) ∗ ŵ is an austere PF submanifold of Vg.

Let t be a maximal abelian subalgebra of the fixed point algebra gσ and ∆(σ) the
corresponding root system of t (see Section 5). We prove (Theorem 7.1):

Theorem II.

(i) If ∆(σ) is a reduced root system then (a) and (b) are equivalent.
(ii) If σ = id then (a) and (b) are equivalent.
(iii) If σ2 = id then (a) implies (b).
(iv) If G is simple then (a) implies (b).

Here (b) does not imply (a) in the cases (iii) and (iv). In fact, there exists a
counterexample.

This is an analogue of the previous theorem ([28]). In fact it turns out by Theorem I
that (a) and (b) are special cases of (A) and (B) respectively and thus (i)–(iii) follow
from the previous results. However (iv) is not trivial because the simplicity is not
preserved by Ω and Υ. Moreover the converse is not trivial because the counterex-
ample given in the previous paper is not an orbit of a σ-action. We prove (iv) based
on the structure theory of automorphisms of G and show a counterexample to the
converse (Theorem 9.2). We also extend the author’s previous results concerning
weakly reflective PF submanifolds (Theorem 8.3).

Finally we study the relations to affine Kac-Moody symmetric spaces. Recall that
each finite dimensional Lie group G is regarded as the symmetric space (G×G)/∆G.

Similarly each affine Kac-Moody group Ĝ can be regraded as a symmetric space

Ĝ×G/(Ĝ×G)τ̂ via a certain isomorphism Λ. We know that the isotropy represen-

tation of Ĝ is essentially the P (G,G(σ))-action on Vg ([40]). We will prove that the



6 M. MORIMOTO

isotropy representation of Ĝ×G/(Ĝ×G)τ̂ is essentially the P (G×G,G(σ)×∆G)-
action on Vg⊕g (Proposition 10.3). Those two actions are conjugate via the isomor-
phisms (Ω,Υ) and related to σ-actions via the parallel transport map (Theorem I).
Consequently we show (Theorem 10.5):

Theorem III. There is a correspondence between the isomorphisms Λ, (Ω,Υ) and
(id, φ):

Affine Kac-Moody
symmetric space

Ĝ = L̂(G, σ)
Λ∼= Ĝ×G/(Ĝ×G)τ̂

Isotropy
representation

P (G,G(σ)) y Vg
(Ω,Υ)∼= P (G×G,G(σ)×∆G) y Vg⊕g

Finite dimensional
counterpart

G(σ) y G
(id, φ)∼= G(σ) y (G×G)/∆G.

This paper is organized as follows. In Section 2 we review foundations of PF
submanifolds, PF actions and parallel transport maps. In Section 3 we define and
investigate the isomorphisms Ω and Υ and prove Theorem I. In Section 4 we derive a
formula for the principal curvatures of the PF submanifold Φ−1(N) for a curvature-
adapted submanifold N of G. In Section 5 we study the submanifold geometry
of orbits of σ-actions. In Section 6 we derive an explicit formula for the principal
curvatures of P (G,G(σ))-orbits. In Section 7 we study conditions for P (G,G(σ))-
orbits to be austere PF submanifolds of Vg and prove Theorem II. In Section 8
we extend the previous results concerning weakly reflective PF submanifolds in
Hilbert spaces. In Section 9 we show concrete examples of austere PF submanifolds
and weakly reflective PF submanifolds which are orbits of a P (G,G(σ))-action. In
Section 10 we study the relations to affine Kac-Moody symmetric spaces and prove
Theorem III.

2. PF submanifolds, PF actions and parallel transport maps

In this section we review foundations of PF submanifolds, PF actions and parallel
transport maps.

Let N be a submanifold of a (separable) Hilbert space V . Suppose that N has
finite codimension in V . N is called proper Fredholm (PF) if the end point map
T⊥N → V , (p, ξ) 7→ p + ξ restricted to a normal disc bundle of any finite radius is
proper and Fredholm ([39]). The proper condition implies that for each u ∈ V the
function fu : N → R, p 7→ ‖p − u‖2 satisfies the Palais-Smale condition ([31, 36]).
The Fredholm condition implies that the shape operators are compact self-adjoint
operators.

Let L be a Hilbert Lie group, acting on a Hilbert space V . The action is called
proper Fredholm (PF) if the map L×V → V ×V , (l, u) 7→ (l ·u, u) is proper and the
map L → V , l 7→ l · u is Fredholm for each u ∈ V ([32]). If L is infinite dimensional
and the action is isometric PF, then every L-orbit is a PF submanifold of V ([32,
Theorem 7.1.6]).

Let G be a connected compact Lie group with Lie algebra g. Choose an Ad(G)-
invariant inner product 〈·, ·〉 of g and equip the corresponding bi-invariant Rie-
mannian metric with G. Denote by G = H1([0, 1], G) the path group of all Sobolev
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H1-paths from [0, 1] to G and by Vg = H0([0, 1], g) the Hilbert space of all H0-paths
from [0, 1] to g. Then G acts on Vg by the affine isometry:

g ∗ u = gug−1 − g′g−1,

where g ∈ G, u ∈ Vg and g′ denotes the weak derivative of g. It follows that this
action is transitive and PF ([40]).

Let L be a closed subgroup of G×G. The subgroup

P (G,L) = {g ∈ G | (g(0), g(1)) ∈ L}
acts on Vg by the same formula. Note that P (G,L) is the inverse image of L under
the submersion ΨG : G → G×G defined by

ΨG(g) = (g(0), g(1)).

It follows that the P (G,L)-action is also PF ([40]). Thus every orbit of the P (G,L)-
action is a PF submanifold of Vg.

For each u ∈ Vg we define gu ∈ G as the unique solution to the linear ordinary
differential equation

g−1g′ = u, g(0) = e.

The parallel transport map Φ : Vg → G is a Riemannian submersion defined by

Φ(u) = gu(1).

By definition Φ(x̂) = expx where x̂ denotes the constant path with value x ∈ g.
Consider the action of G×G on G by

(b, c) · a = bac−1. (2.1)

Then Φ is equivariant via ΨG, that is,

Φ(g ∗ u) = (g(0), g(1)) · Φ(u)

for g ∈ G and u ∈ Vg. Moreover it follows that

P (G,L) ∗ u = Φ−1(L · Φ(u))

for any closed subgroup L of G×G ([40]). More generally, if N is a closed subman-
ifold of G then the inverse image Φ−1(N) is a PF submanifold of Vg ([41, Lemma
5.8]).

Let K be a symmetric subgroup of G with Lie algebra k. Denote by g = k + m
the decomposition into the (±1)-eigenspaces of the involution, which is called the
canonical decomposition. Restricting the Ad(G)-invariant inner product of g to m we
equip the inducedG-invariant Riemannian metric with the homogeneous spaceG/K.
Then G/K is a compact symmetric space and the natural projection π : G→ G/K
is a Riemannian submersion with totally geodesic fiber. The composition

ΦK := π ◦ Φ : Vg → G→ G/K

is a Riemannian submersion which is called the parallel transport map over G/K.
Consider the action of G on G/K by

b · (aK) = (ba)K. (2.2)

Denote by pG : G × G → G the projection onto the first component. Then ΦK is
equivariant via pG ◦ΨG, that is,

ΦK(g ∗ u) = g(0) · ΦK(u)
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for g ∈ P (G,G×K). Moreover we have

P (G,H ×K) ∗ u = Φ−1
K (H · ΦK(u))

for any closed subgroup H of G. More generally, if N is a closed submanifold of
G/K then the inverse image Φ−1

K (N) is a PF submanifold of Vg.

3. The canonical isomorphism of path spaces

In this section we introduce an isomorphism between path spaces and investigate
their relations to the P (G,L)-actions and parallel transport maps.

Recall that a connected compact Lie groupG with a bi-invariant metric is regarded
as the symmetric space (G × G)/∆G. In fact the diagonal ∆G is a symmetric
subgroup of G × G with involution (b, c) 7→ (c, b). The canonical decomposition is
given by

g⊕ g = k + m,

where k = ∆g = {(x, x) | x ∈ g} and m = (∆g)⊥ = {(x,−x) | x ∈ g}. Consider the
diffeomorphism

φ : (G×G)/∆G→ G, (b, c)∆G 7→ bc−1,

whose differential at (e, e)∆G is identified with the map

dφ : (∆g)⊥ → g, (x,−x) 7→ 2x.

Note that

〈dφ(x,−x), dφ(y,−y)〉 = 2〈(x,−x), (y,−y)〉.
Note also that G × G acts on G by (2.1) and acts also on (G × G)/∆G by (2.2).
Clearly φ is equivariant with respect to these G×G-actions.

There is a natural isomorphism of path spaces corresponding to φ:

Definition 3.1. Define the injective homomorphism Ω : G → H1([0, 1], G×G) by

Ω(g) = (g(t/2), g(1− t/2)),

and the linear isomorphism Υ : Vg → Vg⊕g by

Υ(u) = (
1

2
u(t/2), −1

2
u(1− t/2) ).

We call Υ the canonical isomorphism from Vg to Vg⊕g. We also call Ω the canonical
isomorphism (from G to Ω(G)) if there is no confusion.

It is easy to see that

〈Υ(u),Υ(v)〉L2 =
1

2
〈u, v〉L2 .

The maps Ω and Υ have the following equivariant properties:

Theorem 3.2.

(i) Ω(P (G,L)) = P (G × G,L × ∆G) for a closed subgroup L of G × G. In
particular the image of Ω is P (G×G,G×G×∆G).

(ii) Υ is equivariant via Ω, that is,

Υ(g ∗ u) = Ω(g) ∗Υ(u)

for g ∈ G and u ∈ Vg.
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(iii) The following diagrams are commutative:

G Ω−−−→ H1([0, 1], G×G)

ΨG

y pG×G◦ΨG×G
y

G×G id−−−→ G×G

and

Vg
Υ−−−→ Vg⊕g

Φ

y Φ∆G

y
G

φ←−−− (G×G)/∆G ,

where Φ∆G : Vg⊕g → G × G → (G × G)/∆G denotes the parallel transport
map over the symmetric space (G×G)/∆G.

Proof. (i): Clearly Ω(g)(0) = (g(0), g(1)) and Ω(g)(1) = (g(1/2), g(1/2)) ∈ ∆G.
Thus g ∈ P (G,L) if and only if Ω(g) ∈ P (G × G,L × ∆G). Conversely every
element of P (G×G,L×∆G) is obtained in this way. This proves (i).

(ii): We set Ω(g) = g̃ = (g̃1, g̃2) and Υ(u) = ũ = (ũ1, ũ2) so that g̃1(t) = g(t/2),
g̃2(t) = g(1− t/2), ũ1 = 1

2
u(t/2), ũ2 = −1

2
u(1− t/2). Then we have

Υ(gug−1)(t) = (
1

2
g(t/2)u(t/2)g(t/2)−1,−1

2
g(1− t/2)u(1− t/2)g(1− t/2)−1 )

= ( g̃1(t)ũ1(t)g̃1(t)−1, g̃2(t)ũ2(t)g̃2(t)−1 )

= (g̃1, g̃2)(ũ1, ũ2)(g̃1, g̃2)−1(t) = Ω(g)Υ(u)Ω(g)−1(t).

Moreover since g̃′1(t) = 1
2
g′(t/2) and g̃′2(t) = −1

2
g′(1− t/2) we have

Υ(g′g−1)(t) = (
1

2
g′(t/2)g(t/2)−1,−1

2
g′(1− t/2)g(1− t/2)−1)

= (g̃′1(t)g̃1(t)−1, g̃′2(t)g̃2(t)−1) = (g̃1, g̃2)′(g̃1, g̃2)−1 = Ω(g)′Ω(g)−1(t).

Therefore we have

Υ(g ∗ u) = Υ(gug−1 − g′g−1) = Υ(gug−1)−Υ(g′g−1)

= Ω(g)Υ(u)Ω(g)−1 − Ω(g)′Ω(g)−1 = Ω(g) ∗Υ(u).

This proves (ii).
(iii): Let g ∈ G. Then we have

pG×G ◦ΨG×G ◦ Ω(g) = pG×G ◦ΨG×G(g̃) = pG×G(g̃(0), g̃(1))

= g̃(0) = (g̃1(0), g̃2(0)) = (g(0), g(1)) = ΨG(g).

Let u ∈ Vg. Take h ∈ G satisfying u = h ∗ 0̂. Then we have

Φ∆G(Υ(u)) = Φ∆G(Ω(h) ∗ (0̂, 0̂)) = (pG×G ◦ΨG×G)(h) · Φ∆G(0̂, 0̂)

= (h(0), h(1))∆G = φ−1(h(0)h(1)−1) = φ−1(Φ(u)).

This proves (iii) �

Two isometric actions A1 on X1 and A2 on X2 are said to be conjugate if there
exist an isomorphism φ : A1 → A2 and an isometry ϕ : X1 → X2 satisfying ϕ(a·p) =
φ(a)·ϕ(p) for a ∈ A1 and p ∈ X1. In this case we say that these actions are conjugate
via φ and ϕ. We allow ϕ to be a diffeomorphism such that λϕ is an isometry for a
suitable λ ∈ R.

Corollary 3.3. The P (G,L)-action on Vg is conjugate to the P (G × G,L×∆G)-
action on Vg⊕g via Ω and Υ. In particular the P (G,G(σ))-action on Vg is conjugate
to the P (G×G,G(σ)×∆G)-action on Vg⊕g via Ω and Υ.
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Corollary 3.3 is a consequence of (i) and (ii) of Theorem 3.2. It allows us to apply
the general results of P (G,H ×K)-actions to P (G,G(σ))-actions. (iii) of Theorem
3.2 allows us to apply the general results of ΦK to Φ.

Remark 3.4. Considering the case σ = id in Corollary 3.3 we see that the P (G,∆G)-
action on Vg is conjugate to the P (G×G,∆G×∆G)-action on Vg⊕g. This fact was
essentially observed by Pinkall and Thorbergsson [33, Remark in p. 283].

4. Principal curvatures via the parallel transport map Φ

In this section we derive a formula for the principal curvatures of the PF subman-
ifold Φ−1(N) for a curvature-adapted submanifold N of G.

Let G be a connected compact semisimple Lie group with a bi-invariant metric,
Φ : Vg → G the parallel transport map and N a closed submanifold of G. Suppose
that N is k-curvature-adapted ([28]), that is, for each a ∈ N the following conditions
hold:

(i) for every v ∈ T⊥a N the curvature operator Rv leaves TaN invariant,
(ii) for each v ∈ T⊥a N there exists a k-dimensional abelian subalgebra t of g

satisfying v ∈ dla(t) ⊂ T⊥a N such that

{Rdla(ξ)|TaN}ξ∈t ∪ {ANdla(ξ)}ξ∈t

is a commuting family of endomorphisms of TaN .

Here the curvature operator Rv is defined by Rv(x) = RG(x, v)v where RG denotes
the curvature tensor of G. If a = e then Rv is identified with −1

4
ad(v)2. Clearly

1-curvature-adapted submanifolds are just curvature-adapted submanifolds in the
original sense ([1]). We know that all orbits of sigma-actions of cohomogeneity k
are k-curvature-adapted submanifolds ([7, Corollaries 3.3 and 3.4], [28, Proposition
4.2]).

By left translations we can assume without loss of generality that N is through
e ∈ G. Choose and fix a k-dimensional abelian subalgebra t of g satisfying the above
condition (ii) and consider the real root space decomposition with respect to t:

g = g0 +
∑
α∈∆+

gα,

where

g0 = {x ∈ g | ad(η)x = 0 for all η ∈ t},
gα = {x ∈ g | ad(η)2x = −〈α, η〉2x for all η ∈ t}.

This is the common eigenspace decomposition of the commuting operators {ad(ξ)2}ξ∈t.
On the other hand, we have the common eigenspace decomposition of the commut-
ing shape operators {ANξ }ξ∈t. More precisely there exits a unique finite subset Λ of
t such that ([28, Lemma 4.4])

TeN =
∑
λ∈Λ

Sλ,

where

Sλ = {x ∈ TeN | ANξ (x) = 〈λ, ξ〉x for all ξ ∈ t}.
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Since all those operators commute we have

TeN =
∑
λ∈Λ0

(g0 ∩ Sλ) +
∑
α∈∆+

∑
λ∈Λα

(gα ∩ Sλ),

T⊥e N = g0 ∩ T⊥e N +
∑
α∈∆+

(gα ∩ T⊥e N),

where Λ0 = {λ ∈ Λ | g0 ∩ Sλ} and Λα = {λ ∈ Λ | gα ∩ Sλ 6= {0}}. Set

m(0, λ) = dim(gα ∩ Sλ), m(α, λ) = dim(gα ∩ Sλ),
m(0,⊥) = dim(g0 ∩ T⊥e N), m(α,⊥) = dim(gα ∩ T⊥e N).

Based on these decompositions we can describe the principal curvatures of the PF
submanifold Φ−1(N):

Theorem 4.1. Let G be a connected compact semisimple Lie group with a bi-
invariant metric, N a k-curvature-adapted submanifold of G through e ∈ G and
t an abelian subalgebra of g satisfying the above condition (ii). Then for each ξ ∈ t

the principal curvatures of Φ−1(N) in the direction of ξ̂ are given by

{0} ∪ {〈λ, ξ〉 | λ ∈ Λ0 ∪
⋃
β∈∆+

ξ
Λβ}

∪

{
〈α, ξ〉

2 arctan 〈α,ξ〉
2〈λ,ξ〉 + 2mπ

∣∣∣∣∣ α ∈ ∆+\∆+
ξ , λ ∈ Λα, m ∈ Z

}

∪
{
〈α, ξ〉
2nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , gα ∩ T⊥eKN 6= {0}, n ∈ Z\{0}

}
,

where we set ∆+
ξ := {β ∈ ∆+ | 〈β, ξ〉 = 0} and arctan 〈α,ξ〉

2〈λ,ξ〉 := π
2

if 〈λ, ξ〉 = 0. The

multiplicities are respectively given by

∞, m(0, λ) +
∑
β∈∆ξ

m(β, λ), m(α, λ), m(α,⊥).

Proof. Set Ñ := φ−1(N). From Theorem 3.2 (iii) it suffices to compute the principal
curvatures of the PF submanifold Φ−1

∆G(Ñ) of Vg⊕g. For each x ∈ g we denote by

x̃ = (dφ)−1(x) = 1
2
(x,−x). Set t̃ = dφ−1(t) and ∆̃ = dφ−1(∆). The root space

decomposition of m = (∆g)⊥ with respect to t̃ is given by

m = m0 +
∑
α̃∈∆̃

mα̃,

where

m0 = {ỹ ∈ m | ad(η̃)ỹ = 0 for all η̃ ∈ t̃},
mα̃ = {ỹ ∈ m | ad(η̃)2ỹ = −〈α̃, η̃〉2ỹ for all η̃ ∈ t̃}.

On the other hand the common eigenspace decomposition by the commuting shape

operators {AÑ
ξ̃
}ξ̃∈t̃ is

T(e,e)Ñ =
∑
µ∈Γ

Sµ,

where Γ is a finite subset of t̃ and

Sµ = {x̃ ∈ T(e,e)Ñ | AÑξ̃ (x̃) = 〈µ, ξ̃〉x̃ for all ξ̃ ∈ t̃}.
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Since the eigenvalues of ANξ and AÑ
ξ̃

coincide it follows that Γ = {2λ̃ | λ ∈ Λ}.
Thus the assertion follows from the general formula [28, Theorem 5.2] together with

〈α̃, ξ̃〉 = 1
2
〈α, ξ〉 and 〈2λ̃, ξ̃〉 = 〈λ, ξ〉. �

Considering the case N = {e} we obtain the formula for the principal curvatures
of fibers of the parallel transport map Φ : Vg → G ([20, Theorem 4.11]). Here we
choose a maximal abelian subalgebra t of g and thus dim gα = 2.

Corollary 4.2 (King-Terng [20]). The principal curvatures of the fiber Φ−1(e) at

e ∈ G in the direction of ξ̂ ∈ t̂ are given by

{0} ∪
{
〈α, ξ〉
2nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, 2.

5. Submanifold geometry of orbits of σ-actions

In this section we study the submanifold geometry of orbits of σ-actions. The
material is based on Ohno [30] in the case of Hermann actions (see also [28]).

Let G be a connected compact semisimple Lie group and σ an automorphism of
G. We choose an Aut(G)-invariant inner product of g and equip the corresponding
bi-invariant Riemannian metric with G. Take a maximal abelian subalgebra t of the
fixed point algebra gσ. The σ-action is the action of G(σ) = {(b, σ(b)) | b ∈ G} on
G and is hyperpolar where exp t is a section.

Consider the root space decomposition

gC = g(0) +
∑
α∈∆

g(α),

where

g(0) = {z ∈ gC | ad(z) = 0 for all η ∈ t},
g(α) = {z ∈ gC | ad(η)z =

√
−1〈α, η〉z for all η ∈ t},

and ∆ = ∆(σ) is a root system of t. The real form is

g = g0 +
∑
α∈∆+

gα,

where
g0 = g(0) ∩ g, gα = (g(α) + g(−α)) ∩ g.

These are expressed as

g0 = {x ∈ g | ad(η)x = 0 for all η ∈ t},
gα = {x ∈ g | ad(η)2x = −〈α, η〉2x for all η ∈ t}.

We set m(α) := dim gα.
Consider the eigenspace decomposition of σ

gC =
∑
ε∈U(1)

g(ε),

where
g(ε) = {z ∈ gC | σ(z) = εz}.
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Since σ commutes with ad(η) we have

gC =
∑
ε∈U(1)

g(0, ε) +
∑
α∈∆

∑
ε∈U(1)

g(α, ε),

where

g(0, ε) = g(0) ∩ g(ε), g(α, ε) = g(α) ∩ g(ε).

The real form is given by

g =
∑

ε∈U(1)≥0

g0,ε +
∑
α∈∆+

∑
ε∈U(1)

gα,ε, (5.1)

where U(1)≥0 := {ε ∈ U(1) | Im(ε) ≥ 0} and

g0,ε = (g(0, ε) + g(0, ε−1) ∩ g,

gα,ε = (g(α, ε) + g(−α, ε−1)) ∩ g.

We set m(α, ε) = dim gα,ε.

Proposition 5.1. Let w ∈ g. Then the tangent space and the normal space of the
orbit N = G(σ) · a through a = expw are expressed as follows:

TaN = dla(
∑

ε∈U(1)≥0

ε6=1

g0,ε +
∑
α∈∆+

∑
ε∈U(1)

〈α,w〉+arg ε/∈2πZ

gα,ε ), (5.2)

T⊥a N = dla( t +
∑
α∈∆+

∑
ε∈U(1)

〈α,w〉+arg ε∈2πZ

gα,ε ). (5.3)

Moreover (5.2) is the common eigenspace decomposition of the family of shape op-
erators {ANdla(ξ)}ξ∈t. In fact

dla(g0,ε) : the eigenspace associated with the eigenvalue 0,

dla(gα,ε) : the eigenspace associated with the eigenvalue − 〈α,ξ〉
2

cot 〈α,w〉+arg ε
2

.

Proof. Recall that K := ∆G and H := G(σ) are symmetric subgroups of U := G×G
with involution θK : (b, c) 7→ (c, b) and θH : (b, c) 7→ (σ−1(c), σ(b)) respectively.
Their canonical decompositions are respectively given by

u = k + m and u = h + p,

where u = g⊕ g, k = ∆g, m = (∆g)⊥, h = {(x, σ(x)) | x ∈ g} and p = {(x,−σ(x)) |
x ∈ g}. For each x ∈ g we set x̃ = (dφ)−1(x) = 1

2
(x,−x). Note that t̃ = (dφ)−1(t) is a

maximal abelian subspace in m∩p. Set ∆̃ = dφ−1(∆). The root space decomposition
of u with respect to t̃ is given by

u = u(0) +
∑
α̃∈∆̃

u(α̃),

where

u(0) = {(z1, z2) ∈ uC | ad(η̃)(z1, z2) = 0 for all η̃ ∈ t̃},
u(α̃) = {(z1, z2) ∈ uC | ad(η̃)(z1, z2) = 〈α̃, η̃〉(z1, z2) for all η̃ ∈ t̃}.
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Clearly u(0) = g(0)⊕ g(0) and u(α̃) = g(α)⊕ g(α). Consider the eigenspace decom-
position of the composition θK ◦ θH : (b, c) 7→ (σ(b), σ−1(c)):

uC =
∑
ε∈U(1)

u(ε),

where

u(ε) = {(z1, z2) ∈ uC | θK ◦ θH(z1, z2) = ε(z1, z2)}.

Clearly u(ε) = g(ε)⊕ g(ε−1). Similarly to (5.1) we have

u =
∑

ε∈U(1)≥0

u0,ε +
∑
α̃∈∆̃+

∑
ε∈U(1)

uα̃,ε

and therefore we get

m =
∑

ε∈U(1)≥0

m0,ε +
∑
α̃∈∆̃+

∑
ε∈U(1)

mα̃,ε,

where m0,ε = u0,ε ∩ m and mα̃,ε = uα̃,ε ∩ m. It is easy to see that m0,ε = {(x,−x) |
x ∈ g0,ε} and mα̃,ε = {(x,−x) | x ∈ gα̃,ε}. Thus dφ(m0,ε) = g0,ε and φ(mα̃,ε) = gα,ε.
Hence the assertion follows from the results of Hermann actions ([30, p. 12], [28,

Section 3]) together with 〈α̃, ξ̃〉 = 1
2
〈α, ξ〉 and 〈α̃, w̃〉 = 1

2
〈α,w〉. �

If σ is involutive then we have the (±1)-eigenspace decomposition

g = g+ + g−,

where g± = {x ∈ g | σ(x) = ±x}. We set

g+
α := gα ∩ g+ and g−α := gα ∩ g−.

Since gα,1 = g+
α and gα,−1 = g−α we obtain:

Corollary 5.2. Suppose that σ2 = id. Then the tangent space and the normal space
of the orbit N = G(σ) · a through a = expw are expressed as follows:

TaN = dla( g−0 +
∑
α∈∆+

〈α,w〉/∈2πZ

g+
α +

∑
α∈∆+

〈α,w〉+π/∈2πZ

g−α ), (5.4)

T⊥a N = dla( t +
∑
α∈∆+

〈α,w〉∈2πZ

g+
α +

∑
α∈∆+

〈α,w〉+π∈2πZ

g−α ). (5.5)

Moreover (5.4) is the common eigenspace decomposition of {ANdla(ξ)}ξ∈t. In fact

dla(g
−
0 ) : the eigenspace associated with the eigenvalue 0,

dla(g
+
α ) : the eigenspace associated with the eigenvalue − 〈α,ξ〉

2
cot 〈α,w〉

2
,

dla(g
−
α ) : the eigenspace associated with the eigenvalue 〈α,ξ〉

2
tan 〈α,w〉

2
.
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Corollary 5.3. Suppose that σ = id. Then the tangent space and the normal space
of the orbit N = ∆G · a through a = expw are expressed as follows:

TaN = dla( g0 +
∑
α∈∆+

〈α,w〉/∈2πZ

gα ), (5.6)

T⊥a N = dla( t +
∑
α∈∆+

〈α,w〉∈2πZ

gα ). (5.7)

Moreover (5.6) is the common eigenspace decomposition of {ANdla(ξ)}ξ∈t. In fact

dla(g0) : the eigenspace associated with the eigenvalue 0,

dla(gα) : the eigenspace associated with the eigenvalue − 〈α,ξ〉
2

cot 〈α,w〉
2
.

6. Principal curvatures of orbits of P (G,G(σ))-actions

In this section we derive an explicit formula for the principal curvatures of orbits
of P (G,G(σ))-actions.

As in the last section we let G be a connected compact semisimple Lie group with
a bi-invariant metric induced from an Aut(G)-invariant inner product of g and σ
an automorphism of G. Take a maximal abelian subalgebra t of gσ. Then exp t is
a section of the σ-action and t̂ = {x̂ | x ∈ t} is a section of the P (G,G(σ))-action
where x̂ denotes the constant path with value x ∈ g ([40, Theorem 1.2]). Take w ∈ t
and set

U(1)>α = {ε ∈ U(1) | gα,ε 6= {0}, 〈α,w〉+ arg ε /∈ 2πZ},
U(1)⊥α = {ε ∈ U(1) | gα,ε 6= {0}, 〈α,w〉+ arg ε ∈ 2πZ}.

Theorem 6.1. The principal curvatures of P (G,G(σ)) ∗ ŵ in the direction of ξ̂ ∈ t̂
are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉 − arg ε+ 2mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , ε ∈ U(1)>α , m ∈ Z

}
∪
{
〈α, ξ〉
2nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ satisfying U(1)⊥α 6= ∅, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, m(α, ε),
∑

ε∈U(1)⊥α

m(α, ε).

If the orbit is principal then the term 〈α,ξ〉
2nπ

vanishes.

Proof. By Corollary 3.3 the P (G,G(σ))-action on Vg is conjugate the P (G×G,G(σ)×
∆G)-action on Vg⊕g. Since the G(σ)-action on (G × G)/∆G is a Hermann action

the assertion follows from [28, Theorem 6.1] together with 〈α̃, ξ̃〉 = 1
2
〈α, ξ〉 and

〈α̃, w̃〉 = 1
2
〈α,w〉. (It can be also proven by applying Theorem 4.1 to Proposition

5.1.) �



16 M. MORIMOTO

Corollary 6.2. Suppose that σ2 = id. Then the principal curvatures of P (G,G(σ))∗
ŵ in the direction of ξ̂ ∈ t̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉+ 2mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , g+

α 6= {0}, 〈α,w〉 /∈ 2πZ, m ∈ Z
}

∪
{

〈α, ξ〉
−〈α,w〉 − π + 2mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , g−α 6= {0}, 〈α,w〉+ π /∈ 2πZ, m ∈ Z

}
∪
{
〈α, ξ〉
2nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , g+

α 6= {0}, 〈α,w〉 ∈ 2πZ, n ∈ Z\{0}

or α ∈ ∆+\∆+
ξ , g−α 6= {0}, 〈α,w〉+ π ∈ 2πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dim g+
α , dim g−α dim g+

α + dim g−α .

If the orbit is principal then the term 〈α,ξ〉
2nπ

vanishes.

Corollary 6.3. Suppose that σ = id. Then the principal curvatures of P (G,∆G)∗ŵ
in the direction of ξ̂ ∈ t̂ are given by

{0} ∪
{

〈α, ξ〉
−〈α,w〉+ 2mπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , 〈α,w〉 /∈ 2πZ, m ∈ Z

}
∪
{
〈α, ξ〉
2nπ

∣∣∣∣ α ∈ ∆+\∆+
ξ , 〈α,w〉 ∈ 2πZ, n ∈ Z\{0}

}
.

The multiplicities are respectively given by

∞, dim gα, dim gα.

If the orbit is principal then the term 〈α,ξ〉
2nπ

vanishes.

Remark 6.4. Corollary 6.3 generalizes a result by Palais and Terng in the case of
principal P (G,∆G)-orbits ([32, Section 5.8] and [39, p. 24]).

7. The austere property

In this section we study conditions for P (G,G(σ))-orbits to be austere PF sub-
manifolds of Vg.

Let G be a connected compact semisimple Lie group with a bi-invariant metric
induced from an Aut(G)-invariant inner product on g and σ be an automorphism
of G. Consider two conditions for w ∈ g:

(a) The orbit N = G(σ) · expw is an austere submanifold of G.
(b) The orbit Φ−1(N) = P (G,G(σ)) ∗ ŵ is an austere PF submanifold of Vg.

Take a maximal abelian subalgebra t of gσ and denote by ∆ = ∆(σ) the correspond-
ing root system of t. We show (Theorem II in Introduction):

Theorem 7.1.

(i) If ∆(σ) is a reduced root system then (a) and (b) are equivalent.
(ii) If σ = id then (a) and (b) are equivalent.

(iii) If σ2 = id then (a) implies (b).
(iv) If G is simple then (a) implies (b).

Here (b) does not imply (a) in the cases (iii) and (iv). In fact, there exists a
counterexample.
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As mentioned in the Introduction the above (i)–(iii) follow from Theorem 3.2 and
the previous result ([28]). Thus in this section we prove (iv). (A counterexample to
the converse will be shown in Theorem 9.2.) To do this we need two lemmas. The
first one is well-known ([24, p. 44], [12, Theorem 3.9]):

Lemma 7.2. Suppose that G is simple. Then there exist a ∈ G and a diagram
automorphism τ of G which has order 1, 2 or 3 such that σ = τ ◦ Ad(a).

Lemma 7.3. Suppose that there exist an automorphism τ of G and a ∈ G such that
σ = τ ◦ Ad(a). Then

(i) the G(σ)-action is conjugate to the G(τ)-action,
(ii) the P (G,G(σ))-action is conjugate to the P (G,G(τ))-action.

Proof. (i) Since G(σ) = (a, e)−1G(τ)(a, e) it follows that the isometry la : G→ G is
equivariant via the isomorphism Ad(a, e) : G(σ)→ G(τ). This proves (i).

(ii) From the standard arguments in the theory of linear ordinary differential
equations there exists a unique g ∈ P (G,G× {e}) satisfying g(0) = a. Since Ψ is a
group homomorphism it follows that the diagram

G Ad(g)−−−→ G

Ψ

y Ψ

y
G×G Ad(a,e)−−−−→ G×G

commutes. Since P (G,L) is the inverse image of L under Ψ it follows that Ad(g)
maps P (G,G(σ)) isomorphically onto P (G,G(τ)). Moreover the isometry g∗ : Vg →
Vg is equivariant via the isomorphism Ad(g) : P (G,G(σ)) → P (G,G(τ)). This
proves (ii). �

We are now in position to prove (iv) of Theorem 7.1.

Proof of Theorem 7.1 (iv). From Lemmas 7.2 and 7.3 we can assume without loss of
generality that σ is a diagram automorphism of G and has order 1, 2 or 3. If σ has
order 1 then the assertion follows from Theorem 7.1 (ii). If σ has order 2 then the
assertion follows from Theorem 7.1 (iii). If σ has order 3 then g = o(8) and σ is the
so-called triality automorphism. Take a maximal abelian subalgebra t of gσ = g2.
Then the root system ∆ is of type G2 and the assertion follows from Theorem 7.1
(i). �

Corollary 7.4. If σ is inner then (a) and (b) are equivalent.

Proof. Since σ is inner there exists a maximal abelian subalgebra t of g which is
fixed by σ, that is, t ⊂ gσ. Thus the corresponding root system ∆ of t is reduced
and the assertion follows from (i) of Theorem 7.1. �

Example 7.5. Ikawa [17] classified austere orbits of σ-actions when ∆ is irreducible
and σ is involutive. Recently Kimura and Mashimo [19] classified Cartan embed-
dings which are austere submanifolds when G is simple. Applying Theorem 7.1 to
their results we obtain many examples of P (G,G(σ))-orbits which are austere PF
submanifolds of Vg.



18 M. MORIMOTO

8. The weakly reflective property

In this section we extend the author’s previous results concerning weakly reflective
PF submanifolds in Hilbert spaces.

Recall that a submanifold N of a Riemannian manifold M is called weakly reflec-
tive ([18]) if for each normal vector ξ at each p ∈ N there exists an isometry νξ of
M satisfying

νξ(p) = p, νξ(N) = N, dνξ(ξ) = −ξ. (8.1)

It follows that weakly reflective submanifolds are austere submanifolds.
The author [26] extended the concept of weakly reflective submanifolds to the

class of PF submanifolds in Hilbert spaces and studied the relation between the
following conditions:

(C) N is a weakly reflective submanifold of G/K.
(D) Φ−1

K (N) is a weakly reflective PF submanifold of Vg.

Here N is a closed submanifold of a compact symmetric space G/K. He showed
([26, Theorem 8]):

Theorem 8.1 ([26]). Let G be a connected compact semisimple Lie group and K a
symmetric subgroup of G. Suppose that the bi-invariant Riemannian metric of G is
induced by an Aut(G)-invariant inner product of g and G acts effectively on G/K.
Then (C) implies (D).

It is interesting to remark that here G need not be simple and N need not be an
orbit of a Hermann action, unlike in the austere case [28]. Applying this theorem
to examples of weakly reflective submanifolds in G/K he obtained many examples
of weakly reflective PF submanifolds in Vg. We do not know whether (D) implies
(C) or not. If the symmetric space G/K is irreducible (or more generally, G/K is a
compact isotropy irreducible Riemannian homogeneous space) we can characterize
the weakly reflective PF submanifold Φ−1

K (N) ([27]).
In [26] he also studied the relation between the following conditions:

(c) N is a weakly reflective submanifold of G.
(d) Φ−1(N) is a weakly reflective PF submanifold of Vg.

Here N is a closed submanifold of a connected compact Lie group G. The following
theorem claims that (c) implies (d) under strong conditions ([26, Theorem 7]):

Theorem 8.2 ([26]). Let G be a connected compact semisimple Lie group with a
bi-invariant metric. Suppose that N = L · e is the orbit through the identity where L
is a closed subgroup of G×G acting on G by (2.1). Suppose also that N is a weakly
reflective submanifold of G such that for each ξ ∈ T⊥e N the isometry νξ satisfying

(8.1) can be taken from Aut(G). Then Φ−1(N) = P (G,L) ∗ 0̂ is a weakly reflective
PF submanifold of Vg.

The following theorem greatly extends the above theorem:

Theorem 8.3. Let G be a connected compact semisimple Lie group with a bi-
invariant Riemannian metric induced by an Aut(G)-invariant inner product of g.
Then (c) implies (d).

Proof. Set Ñ := φ−1(N). Since Ñ is weakly reflective it follows from Theorem
8.1 that Φ−1

∆G(Ñ) is also weakly reflective. Thus by Theorem 3.2 (iii) the assertion
follows. �
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Here G need not be simple and N need not be an orbit of σ-action, unlike in the
austere case (Theorem 7.1).

Example 8.4. Kimura and Mashimo [19] gave examples of Cartan embeddings
which are weakly reflective submanifolds. Applying Theorem 8.3 to their results we
obtain P (G,G(σ))-orbits which are weakly reflective PF submanifold of Vg.

Remark 8.5. Taketomi [37] introduced a generalized concept of weakly reflective
submanifolds, namely arid submanifolds. The results in this section are also valid
in the case of arid submanifolds (see also [25]).

9. Examples and counterexamples

In this section we show concrete examples of austere PF submanifolds and weakly
reflective PF submanifolds which are orbits of a P (G,G(σ))-action. In particular we
show a counterexample to the converse of (iii) and (iv) of Theorem 7.1. Throughout
this section we will consider the pair

(G, σ) = (SU(2m+ 1), the complex conjugation).

This is the only example of a σ-action whose root system ∆(σ) is non-reduced ([17,
p. 558]).

The canonical decomposition g = g+ + g− is given by g = su(2m+ 1), g+ = gσ =
so(2m+ 1) and

g− =
√
−1{X ∈ sym(2m+ 1,R) | trX = 0}.

We define the Aut(G)-invariant inner product of g by

〈X, Y 〉 = −1

2
tr(XY ) where X, Y ∈ g.

A maximal abelian subalgebra of g+ is

t =


 X1

. . .
Xm

0

 ∈ g+

∣∣∣∣∣∣∣ Xi =

[
0 −xi
xi 0

]
,

xi ∈ R

 .

For each i = 1, · · · ,m we set

ei =

i J i where J =

[
0 −1
1 0

]
.

Then {ei}mi=1 is an orthogonal basis of t. We set

u =


 Y1

. . .
Ym

y

 ∈ g−

∣∣∣∣∣∣∣ Yi =
√
−1

[
yi 0
0 yi

]
, yi ∈ R,

y = −2
√
−1(y1 + · · ·+ ym)

 .

We denote by g2ei the subspace of g− consisting of matrices
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i P i where P =
√
−1

[
p q
q −p

]
, p, q ∈ R

and by gei the subspace of g consisting of matrices

i
v i

−tv̄

where v =

[
z
w

]
∈ C2

lies in the (2m+ 1)-column.

For each 1 ≤ i < j ≤ m we denote by gei±ej the subspace of g consisting of matrices

i j
A i

−tĀ j

where A =

[
α ±β
β ∓α

]
, α, β ∈ C.

Then we obtain the root space decomposition

g = t + u +
m∑
i=1

g2ei +
m∑
i=1

gei +
∑

1≤i<j≤m

gei+ej +
∑

1≤i<j≤m

gei−ej .

The root system ∆ = {ei, 2ei}i∪{ei±ej}i<j is of type BC. The dimensions of those
spaces are

m, m, 2, 4, 4, 4,

respectively. This decomposition is refined as

g+ = t +
m∑
i=1

g+
ei

+
∑

1≤i<j≤m

g+
ei+ej

+
∑

1≤i<j≤m

g+
ei−ej ,

g− = g−0 +
m∑
i=1

g2ei +
m∑
i=1

g−ei +
∑

1≤i<j≤m

g−ei+ej +
∑

1≤i<j≤m

g−ei−ej ,

where g−0 = u.
From now on we take w ∈ t and show examples of orbits G(σ) · expw and

P (G,G(σ)) ∗ ŵ which are austere or weakly reflective. Note that since the ac-

tions are hyperpolar it suffices to consider normal vectors {dlexpw(ξ)}ξ∈t and {ξ̂}ξ∈t̂
respectively ([18, Lemma 4.3 and p. 458], [28, Lemma 7.2]).

Proposition 9.1. Let G, σ be as above. Set

w :=
π

2

m∑
i=1

ei.

Then

(i) the orbit N = G(σ) · expw is an austere submanifold of G,
(ii) the orbit Φ−1(N) = P (G,G(σ)) ∗ ŵ is an austere PF submanifold of Vg.
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Proof. (i) Set a = expw. By Corollary 5.2 we have

TaN = dla( g−0 +
m∑
i=1

g+
ei

+
∑

1≤i<j≤m

g+
ei+ej

+
m∑
i=1

g−ei +
∑

1≤i<j≤m

g−ei−ej ),

T⊥a N = dla( t +
∑

1≤i<j≤m

g+
ei−ej +

m∑
i=1

g2ei +
∑

1≤i<j≤m

g−ei+ej ),

and the principal curvatures of N in the direction of dla(ξ) are expressed as the
inner product of ξ and vectors

0, −1

2
ei, 0,

1

2
ei, 0.

Since the set of these vectors are invariant under the multiplication by (−1) it follows
that N is an austere submanifold of G. (Note that the proof of [16, Theorem 2.18]
on the austere property is not correct when the root system is of type BC1.)

(ii) The assertion follows by applying Theorem 7.1 (iii) to (i). To describe the
principal curvatures explicitly, we give a direct proof here. By corollary 6.2 the
principal curvatures of P (G,G(σ)) ∗ ŵ in the direction of ξ̂ is expressed as the inner
product of ξ and vectors

{0},
{

1

−π
2

+ 2mπ
ei

}
m∈Z

,

{
1

−π + 2mπ
(ei + ej)

}
m∈Z

,

{
1

−3
2
π + 2mπ

ei

}
m∈Z{

1

−π + 2mπ
(ei − ej)

}
m∈Z

,

{
1

2nπ
α

∣∣∣∣ α = ei − ej, 2ei, ei + ej

}
n∈Z\{0}

.

Clearly the set { 1
2nπ

α}n∈Z\{0} is austere (i.e. invariant under the multiplication by
(−1)) for each α. By the equality

1

−π + 2mπ
(ei ± ej) = (−1)× 1

−π + 2(−m+ 1)π
(ei ± ej), (9.1)

the set { 1
−π+2mπ

(ei ± ej)}m∈Z is austere. By the equality

1

−π
2

+ 2mπ
ei = (−1)× 1

−3
2
π + 2(−m+ 1)π

ei, (9.2)

the set { 1
−π/2+2mπ

ei,
1

−3π/2+2mπ
ei}m∈Z is austere. These show that the orbit P (G,G(σ))∗

ŵ is an austere PF submanifold of Vg. �

The following theorem shows a counterexample to the converse of (3) and (4) of
Theorem 7.1.

Theorem 9.2. Let G, σ be as above. Set

w :=
π

4

m∑
i=1

ei.

Then

(i) the orbit N = G(σ)·expw is a minimal submanifold of G, but not an austere
submanifold of G,

(ii) the orbit Φ−1(N) = P (G,G(σ)) ∗ ŵ is an austere PF submanifold of Vg.
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Remark 9.3. This counterexample is different from the one given in [28, Section
9]. In fact the previous one is not an orbit of a σ-action. The symmetric triads
corresponding to those actions are of the same type (II-BC, see [16, 17]). However
their multiplicities are different.

Proof of Theorem 9.2. (i) Set a = expw. By Corollary 5.2 we have

TaN = dla( g−0 +
m∑
i=1

g+
ei

+
∑

1≤i<j≤m

g+
ei+ej

+
m∑
i=1

g2ei +
m∑
i=1

g−ei +
∑

1≤i<j≤m

g−ei+ej +
∑

1≤i<j≤m

g−ei−ej , )

T⊥a N = dla( t +
∑

1≤i<j≤m

g+
ei−ej ),

and the principal curvatures of N in the direction of dla(ξ) are expressed as the
inner product of ξ and vectors

0, −(
√

2 + 1)

2
ei, −1

2
(ei + ej), ei,

(
√

2− 1)

2
ei,

1

2
(ei + ej), 0.

Since the sum of these vectors are zero, N is a minimal submanifold. However since
the set of those vectors is not invariant under the multiplication by (−1) it is not
austere.

(ii) By Corollary 6.2 the principal curvatures of P (G,G(σ)) ∗ ŵ in the direction

of ξ̂ are the inner product of ξ and vectors

{0},
{

1

−π
4

+ 2mπ
ei

}
m∈Z

,

{
1

−π
2

+ 2mπ
(ei + ej)

}
m∈Z

,{
1

−3
2
π + 2mπ

2ei

}
m∈Z

,

{
1

−5
4
π + 2mπ

ei

}
m∈Z

,

{
1

−3
2
π + 2mπ

(ei + ej)

}
m∈Z

,{
1

−π + 2mπ
(ei − ej)

}
m∈Z

,

{
1

2nπ
(ei − ej)

}
n∈Z\{0}

.

By the similar arguments as in Proposition 9.1 the sets { 1
−π+2mπ

(ei − ej)}m∈Z,

{ 1
2nπ

(ei− ej)}n∈Z and { 1
−π/2+2mπ

(ei + ej),
1

−3π/2+2mπ
(ei + ej)}m∈Z are austere. More-

over we have{
1

−3
2
π + 2mπ

2ei

}
m∈Z

=

{
1

−3
4
π + 2mπ

ei

}
m∈Z
∪
{

1

−7
4
π + 2mπ

ei

}
m∈Z

.

This together with the equalities

1

−π
4

+ 2mπ
ei = (−1)× 1

−7
4
π + 2(−m+ 1)π

ei,

1

−5
4
π + 2mπ

ei = (−1)× 1

−3
4
π + 2(−m+ 1)π

ei,

shows that the set { 1
−π/4+2mπ

ei,
1

−5π/4+2mπ
ei,

1
−3π/2+2mπ

2ei}m∈Z is austere. These

show that the orbit P (G,G(σ)) ∗ ŵ is an austere PF submanifold of Vg. �
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The following proposition shows that the austere examples given in Proposition
9.1 are actually weakly reflective. Here (i) is base on a result by Ohno [29, Theorem
5] (see also Kimura-Mashimo [19, Proposition 5.2]).

Proposition 9.4. Let G, σ be as above. Set

w :=
π

2

m∑
i=1

ei.

Then

(i) the orbit N = G(σ) · expw is a weakly reflective submanifold of G,
(ii) the orbit Φ−1(N) = P (G,G(σ)) ∗ ŵ is a weakly reflective PF submanifold of

Vg.

Proof. (i) It is easy to see that

a = expw =

 J
. . .

J
1

 where J =

[
0 −1
1 0

]
.

Thus

dla(t) =

 R1
. . .

Rm
0

 where Ri =

[
ri 0
0 ri

]
.

Define an isometry ν : G→ G by

ν = (b, σ(b)) where b :=


√
−1L

. . . √
−1L

1

 , L =

[
0 1
1 0

]
.

Then ν ∈ G(σ) and we have

ν(a) = a, ν(G(σ) · a) = G(σ) · a and dν(dlaξ) = −dlaξ
for any ξ ∈ t. By homogeneity it follows that G(σ) · expw is a weakly reflective
submanifold of G.

(ii) The assertion follows by applying Theorem 8.3 to (i). To express an isometry
with respect to normal vectors explicitly we give a direct proof here. Let q ∈ G be

q(t) =

 Q(t)
. . .

Q(t)
1

 where Q(t) =
√
−1

[
sinπt cosπt
cosπt − sin πt

]
and set

ν̂ := (q∗).
Clearly (q(0), q(1)) ∈ G(σ) and thus q ∈ P (G,G(σ)). Hence

ν(P (G,G(σ)) ∗ ŵ) = P (G,G(σ)) ∗ ŵ.
Moreover it follows from matrix computations that

q ∗ ŵ = ŵ and d(q∗)ξ̂ = −ξ̂,
where d(q∗) = Ad(q). Thus by homogeneity it follows that P (G,G(σ)) ∗ ŵ is a
weakly reflective PF submanifold of Vg. �
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10. Relations to affine Kac-Moody symmetric spaces

In this section we study the relation between the canonical isomorphisms defined
in Section 3 and affine Kac-Moody symmetric spaces.

First we review foundations of affine Kac-Moody symmetric spaces following [10].
Let G be a simply connected compact simple Lie group with Lie algebra g and

σ an automorphism of G. The differential of σ is still denoted by σ. Denote by
〈·, ·〉 the inner product of g which is the negative of the Killing form of g. The loop
algebra

L(g, σ) = {u : R→ g | u ∈ C∞, u(t+ 2π) = σ(u(t)) for all t}

is a Lie algebra with pointwise bracket. We equip the inner product 〈u, v〉L2 =∫ 2π

0
〈u(t), v(t)〉dt with L(g, σ). Denote by ωλ the cocycle defined by ωλ(u, v) =

λ〈u′, v〉L2 for λ ∈ R\{0}. An affine Kac-Moody algebra is a Lie algebra

L̂(g, σ) := L(g, σ) + Rc+ Rd,

where the bracket is defined by

[u, v] = [u, v] + ωλ(u, v)c,

[d, u] = u′,

[c, x] = 0,

where u, v ∈ L(g, σ) and x ∈ L̂(g, σ). It has the center Rc and the derived algebra
L̃(g, σ) := L(g, σ) + Rc. If σ1, σ2 ∈ Aut g are conjugate by an inner automorphism
then the corresponding affine Kac-Moody algebras are isomorphic. Thus we can
assume that σ has finite order. We define the Lorentzian inner product on L̂(g, σ)
by

〈u+ αc+ βd, v + γc+ δd〉 = 〈u, v〉L2 + αδ + βγ.

Clearly c, d ⊥ L(g, σ), ‖c‖ = ‖d‖ = 0 and 〈c, d〉 = 1. It follows that 〈[x, y], z〉 =

〈x, [y, z]〉 for x, y, z ∈ L̂(g, σ).
The twisted loop group

L(G, σ) = {g : R→ G | g ∈ C∞, g(t+ 2π) = σ(g(t)) for all t}

with pointwise multiplication is a Fréchet Lie group with Lie algebra L(g, σ). The
cocycle ωλ defines a left-invariant closed 2-form on L(G, σ) and moreover defines a
central extension L̃(G, σ) of L(G, σ) by the circle S1 for discrete values of λ ([35]).
L̃(G, σ) has Lie algebra L̃(g, σ). There exists a unique λ0 such that L̃(G, σ) is simply

connected. An affine Kac-Moody group L̂(G, σ) is a Fréchet Lie group defined by

L̂(G, σ) := S1 n L̃(G, σ).

Here the S1-action on L̃(G, σ) is induced by the action on L(G, σ) by shifting the

parameter of loops. L̂(G, σ) is a 2-torus bundle over L(G, σ) and has Lie algebra

L̂(g, σ). We equip the bi-invariant Lorentzian metric on L̂(G, σ). Then L̂(G, σ) is a
symmetric space where a reflection at the identity is given by g 7→ g−1.

For an involutive automorphism ρ̂ of Ĝ = L̂(G, σ) we consider the quotient Ĝ/K̂

by the fixed point subgroup K̂ = Ĝρ̂. The differential of ρ̂ is still denoted by ρ̂.
The Lie algebra ĝ = L̂(g, σ) is decomposed into the (±1)-eigenspaces ĝ = k̂ + m̂.
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Restricting the inner product on ĝ to m̂ we equip the Ĝ-invariant metric with Ĝ/K̂.

Then Ĝ/K̂ is a symmetric space where a reflection at eK̂ is given by ĝK̂ 7→ ρ(ĝ)K̂.
From the structure theory of involutions of affine Kac-Moody algebras ([12, 10,

11]) there are essentially two kinds of involutions, namely

(1) ρ̂ satisfies ρ̂(c) = c, ρ̂(d) = d and ρ̂(u)(t) = ρ(u(t)) where ρ ∈ Aut g, ρ2 = id
and σρ = ρσ,

(2) ρ̂ satisfies ρ̂(c) = −c, ρ̂(d) = −d, ρ̂(u)(t) = ρ(u(−t)) where ρ ∈ Aut g,
ρ2 = id and σρ = ρσ−1.

We will always consider the latter one, called the involution of the second kind, so
that the extension from L(G, σ) to L̂(G, σ) is not canceled in the quotient.

By definition an affine Kac-Moody symmetric space is either an affine Kac-Moody
group Ĝ (the group type) or the symmetric space Ĝ/K̂ with respect to an involution

ρ̂ of the second kind. Note that Ĝ can be written as the quotient Ĝ×G/(Ĝ×G)ρ̂

where Ĝ×G = L̂(G×G, σ× σ−1) is a slight generalization of an affine Kac-Moody
group and ρ̂ the involution of the second kind defined by

ρ̂(c) = −c, ρ̂(d) = −d, ρ̂(u, v)(t) = (v(−t), u(−t)). (10.1)

It was shown that Ĝ and Ĝ/K̂ are tame Fréchet manifolds, where an inverse function
theorem is available ([8]). The unique existence theorem of the Levi-Civita connec-
tion and the conjugacy theorem of finite dimensional maximal flats are verified for
affine Kac-Moody symmetric spaces ([34]). The concept of duality of symmetric
spaces is extended to affine Kac-Moody symmetric spaces based on the theory of
complex Kac-Moody groups ([6]). The classification of affine Kac-Moody symmetric
spaces is essentially equivalent to the classification of involutions of affine Kac-Moody
algebras up to conjugation ([11]).

Next we review their close relations to hyperpolar PF actions.
Let π : L̃(G, σ) → L(G, σ) denote the projection. For each g̃ ∈ L̃(G, σ) we write

g = π(g̃). The adjoint action of L̂(G, σ) = S1 n L̃(G, σ) on ĝ = L̂(g, σ) is defined
by ([35])

Ad(g̃)c = c,

Ad(g̃)d = d− g′g−1 − 1

2
‖g′g−1‖2c,

Ad(g̃)u = gug−1 + 〈g′g−1, gug−1〉c

for g̃ ∈ L̃(G, σ) and

Ad(eis) = c, Ad(eis) = d, Ad(eis)u = us

for eis ∈ S1. Here us(t) := u(s + t). For the involution ρ̂ of the second kind the

canonical decomposition ĝ = k̂ + m̂ is given by

k̂ = {u ∈ L(g, σ) | ρ(u(−t)) = u(t)},
m̂ = {u+ αc+ βd | u ∈ L(g, σ), ρ(u(−t)) = −u(t), α, β ∈ R}.

The adjoint action of Ĝ on ĝ induces the action of K̂ on m̂, which is called the isotropy
representation of Ĝ/K̂. In the group case we define the isotropy representation of

Ĝ to be the induced action of L(G, σ) on ĝ.
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Since the adjoint action preserves the inner product and the d-coefficient it leaves
invariant the two-sheeted hyperboloid {x ∈ L̂(g, σ) | 〈x, x〉 = −1}, the hyperplane
{u+ αc+ d | u ∈ L(g, σ)} and hence their intersection

Hor(ĝ) =

{
d+ u− ‖u‖

2 + 1

2
c | u ∈ L(g, σ)

}
,

which is geometrically interpreted as a horosphere of codimension 2. For x = d +

u− ‖u‖
2+1
2

c we have

(eis, g̃) · x =

(
d+ g ∗ u− ‖g ∗ u‖

2 + 1

2
c

)
s

,

where g ∗ u = gug−1 − g′g−1 is the gauge transformation. Thus via the isometry

Γ : L(g, σ)→ Hor(ĝ), u 7→ d+ u− ‖u‖
2 + 1

2
c

L̂(G, σ) acts on L(g, σ) by the gauge transformations.
Recall that two isometric actions of A1 on X1 and of A2 on X2 are called essentially

equivalent ([35, p. 167]) if there exist an injective homomorphism φ : A1 → A2 and
an injective isometry ϕ : X1 → X2 which have dense images and satisfy ϕ(a ·
p) = φ(a) · ϕ(p) for a ∈ A1 and p ∈ X1. For r > 0 we set Gr = H1([0, r], G),
V r
g = H0([0, r], g) and

P (G,L)r = {g ∈ Gr | (g(0), g(r)) ∈ L}

for a closed subgroup L of G × G. Similarly we can define the P (G,L)r-action on
V r
g by gauge transformations and the parallel transport map Φr : V r

g → G.
The following two propositions show the close relation between affine Kac-Moody

symmetric spaces and hyperpolar PF actions ([40, p. 148], [12, Proposition 4.14]).
In connection with the formulation of our results we give their proofs here.

Proposition 10.1 (Terng [40]). Let Ĝ = L̂(G, σ) be an affine Kac-Moody sym-
metric space of group type. Then the isotropy representation restricted to Hor(ĝ) is
essentially equivalent to the P (G,G(σ))2π-action on V 2π

g .

Proof. The completion of L(G, σ) with respect to the H1-metric is

{g : R→ G | g ∈ H1, g(t+ 2π) = σ(g(t)) for all t}
∼= {g : [0, 2π]→ G | g ∈ H1, g(2π) = σ(g(0))}.

Moreover the completion of L(g, σ) with respect to the H0-metric is

{u : R→ g | u ∈ H0, u(t+ 2π) = σ(u(t)) for all t}
∼= {u : [0, 2π]→ g | u ∈ H0}.

This proves the proposition. �

Proposition 10.2 (Heintze-Palais-Terng-Thorbergsson [12]). Let Ĝ/K̂ be an affine
Kac-Moody symmetric space. Then the isotropy representation restricted to Hor(ĝ)∩
m̂ is essentially equivalent to the P (G,Gρ × Gσρ)π-action on V π

g . Here the inner

product of V π
g is defined by 〈u, v〉 := 2

∫ π
0
〈u(t), v(t)〉dt.
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Proof. The completion of K̂ with respect to the H1-metric is

{g : R→ G | g ∈ H1, g(t+ 2π) = σ(g(t)), ρ(g(−t)) = g(t)}
∼= {g : [0, 2π]→ G | g ∈ H1, g(2π) = σ(g(0)), ρ(σ−1g(2π − t)) = g(t)}
∼= {g : [0, π]→ G | g ∈ H1, ρ(σ−1g(0)) = σ(g(0)), ρ(σ−1g(π)) = g(π)}
= {g : [0, π]→ G | g ∈ H1, σ−1ρσ−1g(0) = g(0), ρσ−1(g(π)) = g(π)}
= {g : [0, π]→ G | g ∈ H1, ρg(0) = g(0), σρ(g(π)) = g(π)}.

The completion of Γ−1(m̂) with respect to the H0-metric is

{u : R→ g | u ∈ H0, u(t+ 2π) = σ(u(t)), ρ(u(−t)) = −u(t)}
∼= {u : [0, 2π]→ g | u ∈ H0, ρ(σ−1u(2π − t)) = −u(t)}
∼= {u : [0, π]→ g | u ∈ H0}.

This proves the proposition. �

Finally we focus on the case of group type and show our results.

Proposition 10.3. Let Ĝ×G/(Ĝ×G)ρ̂ be the affine Kac-Moody symmetric space

isomorphic to Ĝ. Then the isotropy representation restricted to the horosphere is
essentially equivalent to the P (G×G,G(σ)×∆G)π-action on V π

g⊕g.

Proof. Recall that the involution ρ̂ was defined by (10.1). We consider another
involution τ̂ of the second kind defined by

τ̂(c) = −c, τ̂(d) = −d, τ̂(u, v)(t) = (σ−1v(−t), σu(−t)). (10.2)

Note that ρ̂ and τ̂ are conjugate and thus the corresponding quotients are isomorphic.
Then by the similar argument as in Proposition 10.2 it follows that the isotropy rep-

resentation of Ĝ×G/(Ĝ×G)τ̂ restricted to the horosphere is essentially equivalent
to the P (G×G,G(σ)×∆G)π-action on V π

g⊕g. �

By the same way as in Section 3 we define the canonical isomorphisms Ω : G2π →
Gπ and Υ : V 2π

g → V π
g⊕g by

Ω(g) = (g(t), g(2π − t)), Υ(u) = (u(t),−u(2π − t)).

Corollary 10.4. Let Ĝ = L̂(G, σ) be an affine Kac-Moody symmetric space of group

type and Ĝ×G/(Ĝ×G)ρ̂ the quotient isomorphic to Ĝ. Then their isotropy repre-
sentations restricted to the horospheres are essentially equivalent to the P (G,G(σ))2π-
action on V 2π

g and P (G×G,G(σ)×∆G)π-action on V π
g⊕g respectively and these are

conjugate via the canonical isomorphisms Ω and Υ.

Proof. The first half of the assertion follows from Propositions 10.1 and 10.3. The
second half follows from Corollary 3.3. �

This corollary suggests that there is a correspondence between the isomorphism

Ĝ ∼= Ĝ×G/(Ĝ×G)ρ̂ and the canonical isomorphisms (Ω,Υ). Let us show this
correspondence more explicitly. By conjugacy we can replace the involution ρ̂ with
τ̂ . Consider the map

λ : Ĝ×G→ Ĝ

whose differential is

dλ : ĝ⊕ g→ ĝ, (u(t), v(t)) + αc+ βd 7→ (u(t)− σ−1v(−t)) + αc+ βd.
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The inverse image λ−1(ê) of the identity ê is (Ĝ×G)τ̂ . Thus it induces the isomor-
phism

Λ : Ĝ×G/(Ĝ×G)τ̂ → Ĝ.

There is an isomorphism between the isotropy subgroups

ϕ : L(G, σ)→ (Ĝ×G)τ̂ , g(t) 7→ (g(t), σ(g(−t))).

The canonical decomposition ĝ⊕ g = k̂ + m̂ with respect to τ̂ is given by

k̂ = {(u(t), σ(u(−t))) | u ∈ L(g, σ)},
m̂ = {(u(t),−σu(−t)) + αc+ βd | u ∈ L(g, σ), α, β ∈ R}.

There is an isomorphism between the linear subspaces

ψ : ĝ→ m̂, u(t) + αc+ βd 7→ (u(t),−σ(u(−t))) + αc+ βd.

We define the inner product of ĝ⊕ g by

〈(u1, u2) + αc+ βd, (v1, v2) + γc+ δd〉 =
1

2
(〈u1, u2〉L2 + 〈v1, v2〉L2) + αδ + βγ.

Then the isotropy representations of L(G, σ) on ĝ and of (Ĝ×G)τ̂ on m̂ are conju-
gate via ϕ and ψ. Moreover ψ induces the isometry

ψ : Hor(ĝ)→ Hor(ĝ⊕ g) ∩ m̂,

which induces

ψ : L(g, σ)→ Γ−1(m̂), u(t) 7→ (u(t),−σ(u(−t))).

Since σ(g(−t)) = g(2π − t) and σ(u(−t)) = u(2π − t) the diagrams

L(G, σ)
ϕ−−−→ Ĝ×G

ρ̂y y
P (G,G(σ))2π Ω−−−→ P (G×G,G(σ)×∆G)π

(10.3)

and

L(g, σ)
ψ−−−→ Γ−1(m̂)y y

V 2π
g

Υ−−−→ V π
g⊕g

(10.4)

are commutative, where the vertical arrows denote the injective maps with dense im-
ages given in Propositions 10.1 and 10.2. In this way the isomorphism Λ corresponds
to (Ω,Υ).

Moreover we have shown in Theorem 3.2 that the diagrams

P (G,G(σ))2π Ω−−−→ P (G×G,G(σ)×∆G)π

(ΨG)2π

y pG×G◦(ΨG×G)π

y
G(σ)

id−−−→ G(σ)

(10.5)
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and

V 2π
g

Υ−−−→ V π
g⊕g

Φ2π

y Φπ∆G

y
G

φ←−−− (G×G)/∆G ,

(10.6)

are commutative. This shows that the isomorphisms (Ω,Υ) correspond to (id, ρ).
From these discussions we have:

Theorem 10.5. There is a correspondence between:

(i) the isomorphism Λ between Ĝ and Ĝ×G/(Ĝ×G)τ̂ ,
(ii) the conjugacy between hyperpolar PF actions of P (G,G(σ))2π on V 2π

g and
of P (G×G,G(σ)×∆G)π on V π

g⊕g via Ω and Υ (Corollary 3.3),
(iii) the conjugacy between the actions of G(σ) on G and of G(σ) on (G×G)/∆G

via id and φ.
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