# Kervaire conjecture on weight of group via fundamental group of ribbon sphere-link 

Akio KAWAUCHI<br>Osaka central Advanced Mathematical Institute, Osaka Municipal University<br>Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan<br>kawauchi@omu.ac.jp


#### Abstract

Kervaire conjecture that the weight of the free product of every non-trivial group and the infinite cyclic group is not one is confirmed by confirming Conjecture Z of a knot exterior.

Keywords: Weight, Kervaire conjecture, Conjecture Z, Whitehead aspherical conjecture, Ribbon sphere-link, Mathematics Subject classification 2020: 20F06, 57M05


## 1. Introduction

A weight system of a group $G$ is a system of elements $w_{i},(i=1,2, \ldots, n)$ of $G$ such that the normal closure of the elements $w_{i},(i=1,2, \ldots, n)(=$ : the smallest normal subgroup generated by $\left.w_{i},(i=1,2, \ldots, n)\right)$ is equal to $G$. The weight of a group $G$ is the least cardinal number of a weight system of $G$. Kervaire's conjecture on the weight of a group is the following conjecture (see Kervaire [6], Magnus-Karrass-Solitar [8, p. 403]):

Kervaire Conjecture. The free product $G * \mathbf{Z}$ of every non-trivial group $G$ and the infinite cyclic group $\mathbf{Z}$ is not of weight one.

Some partial confirmations of this conjecture are known. In this paper, the result of Klyachko [7] that $G * \mathbf{Z}$ is not of weight one for every non-trivial torsion-free group
$G$ is used. González-Acuña and Ramírez in [2] showed that it is sufficient to confirm this conjecture for every non-trivial finitely presented group, and further showed that this conjecture is equivalent to it Conjecture Z of a knot exterior. To explain this conjecture, some terminologies are fixed. A knot exterior is a compact 3-manifold $E=\operatorname{cl}\left(S^{3} \backslash N(k)\right)$ for a tubular neighborhood $N(k)$ of a polygonal knot $k$ in the 3-sphere $S^{3}$. Let $F$ be a compact connected orientable non-separating proper surface of $E$. Let $E(F)=\operatorname{cl}(E \backslash F \times I)$ be the compact piecewise-linear 3-manifold for a normal line bundle $F \times I$ of $F$ in $E(F)$ where $I=[-1,1]$. Let $\hat{E}(F)$ be the 3 -complex obtained from $E(F)$ by adding the cone $\operatorname{Cone}(v, F \times \partial I)$ over the base $F \times \partial I$ with vertex $v$. The 3 -complex $\hat{E}(F)$ is also obtained from $E$ by shrinking the normal line bundle $F \times I$ into the vertex $v$.

Conjecture Z. The fundamental group $\pi_{1}(\hat{E}(F), v)$ is always isomorphic to $\mathbf{Z}$.

See $[1,2,9]$ for some investigations of this surface $F$ and some partial confirmations. In this paper, Kervaire conjecture is confirmed by confirming this Conjecture Z.

Theorem. Conjecture Z is true. .

The proof of Theorem is done by showing that the fundamental group $\pi_{1}(\hat{E}(F), v)$ is always torsion-free, which comes from torsion-freeness of the fundamental group of a ribbon $S^{2}$-link claimed in [4]. Conceptially, it can be understood that this result comes from Whitehead aspherical conjecture saying that every connected subcomplex of every aspherical 2-complex is aspherical (see $[4,5]$ ). Then $\pi_{1}(\hat{E}(F), v) \cong \mathbf{Z}$ is concluded by the result of [7].

In the first draft of this research, the author tried to show that every finitely presented group $G$ with free product group $G * \mathbf{Z}$ of weight one is torsion-free. This trial succeeds for a group $G$ of deficiency 0 , but failed for a group $G$ of negative deficiency. The main point of this failure is the attempt to construct a finitely presented group of deficiency 0 from the group of negative deficiency, which forced the author to show that $G$ is torsion-free while the deficiency remains negative. Fortunately, in Conjecture Z, the 3-complex $\hat{E}(F)$ which is the object to be considered is simple, so it could be done.

The proof of Theorem is done in Section 2.

## 2. Proof of Theorem

The proof of Theorem is done as follows, but the main point of the proof is how a finite contractible 2-complex is constructed to contain, as a subcomplex, a 2-complex which is homotopy equivalent to the 3 -complex $\hat{E}^{\prime}$.

Proof of Theorem. Let $\hat{E}(F)^{\prime}$ be the 3 -complex obtained from $E(F)$ by shrinking $F \times 1$ and $F \times(-1)$ into distinct vertexes $v_{+}$and $v_{-}$, respectively. The 3 -complex $\hat{E}(F)$ is homotopy equivalent to a bouquet $X=\hat{E}(F)^{\prime} \vee S^{1}$ of $\hat{E}(F)^{\prime}$ and the circle $S^{1}$. Let $Y$ be the 3-complex obtained from $X$ by attaching of a 2 -cell arising from attaching a meridian disk to $E$. Then $\pi_{1}(Y, v)$ is obtained from $\pi_{1}(X, v)=\pi_{1}(\hat{E}, v) * \mathbf{Z}$ by adding a relation and $\pi_{1}(Y, v)=\{1\}$. If $\pi_{1}(\hat{E}(F), v)$ is torsion-free, then $\pi_{1}\left(\hat{E}(F)^{\prime}, v\right)$ is torsion-free. By the result of $[7], \pi_{1}\left(\hat{E}(F)^{\prime}, v\right)=\{1\}$ and $\pi_{1}(\hat{E}(F), v) \cong \mathbf{Z}$. To complete the proof, it sufficies to show that $\pi_{1}(\hat{E}(F), v)$ is torsion-free, Collapse $F$ into a triangulated graph $\gamma$ by using that $F$ is a bounded surface. Enlarge the fiber $I$ of a normal line bundle $F \times I$ of $F$ in $E$ into a fiber $\bar{I}$ of a normal line bundle $F \times \bar{I}$ of $F$ in $E$ so that $I \subset \bar{I} \backslash \partial \bar{I}$. Let $\bar{I}^{c}=\operatorname{cl}(\bar{I} \backslash I)$. Let $E(F)^{-}=\operatorname{cl}(E \backslash F \times \bar{I})$. Collapse $F \times \bar{I}^{c}$ into $\gamma \times \bar{I}^{c}$. Triangulate $\gamma \times \bar{I}^{c}$ without introducing new vertexes. The 3-complex $\hat{E}(F)$ is collapsed into a finite 3-complex

$$
E(F)^{-} \cup \gamma \times \bar{I}^{c} \cup \operatorname{Cone}(v, \gamma \times \partial I)
$$

and thus collapsed into a finite 2-complex

$$
P=P^{-} \cup \gamma \times \bar{I}^{c} \cup \text { Cone }(v, \gamma \times \partial I)
$$

for any 2-complex $P^{-}$collapsed from $E(F)^{-}$. This 2-complex $P$ is a subcomplex of a 3 -complex

$$
Q=\operatorname{Cone}\left(v, P^{-} \cup \gamma \times \bar{I}^{c}\right)
$$

Since every 2-complex of $\gamma \times \bar{I}^{c}$ contains at most one 1-simplex of $\gamma \times \partial I$, every 3simplex of Cone $\left(v, \gamma \times \bar{I}^{c}\right)$ contains at most one 2 -simplex of Cone $(v, \gamma \times \partial I)$. Collapse every 3 -simplex of Cone $\left(v, \gamma \times \bar{I}^{c}\right)$ from a 2 -face containing $v$ and not belonging to Cone $(v, \gamma \times \partial I)$. Then collapse every 3 -simplex of Cone $\left(v, P^{-}\right)$from any 2 -face containing $v$. Thus, the 3-complex $Q$ is collapsed into a finite 2-complex $C$ containing the 2-complex $P$ as a subcomplex. Since $Q$ is contractible, $C$ is a finite contractible 2-complex. By the argument of [4], the group $\pi_{1}(P, v)$ is a torsion-free group, actually a ribbon $S^{2}$-knot group for $H_{1}(P ; \mathbf{Z}) \cong \mathbf{Z}$. Thus, the group $\pi_{1}(\hat{E}(F), v)$ is torsion-free since $\pi_{1}(\hat{E}(F), v)$ is isomorphic to $\pi_{1}(P, v)$. This completes the proof of Theorem.

The result that the fundamental group of a ribbon $S^{2}$-link is torsion-free can be shown without use of the smooth 4D Poincaré conjecture and the smooth unknotting
conjecture for an $S^{2}$-link as it is observed in [5], although the proof in [4] uses them. On the other hand, the result of [3, Lemma 3.4] is still basic to this proof.

## Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Numbers JP19H01788, JP21H00978 and Osaka central Advanced Mathematical Institute, Osaka Metropolitan University (MEXT Joint Usage/ Research Center on Mathematics and Theoretical Physics JPMXP 0619217849).

## References

[1] M. Eudave-Muñoz, On knots with icon surfaces, Osaka Journal of Mathematics, 50 (2013), 271-285.
[2] F. González-Acuña and A. Ramírez, A knot-theoretic equivalent of the Kervaire conjecture, J. Knot Theory Ramifications, 15 (2006), 471-478.
[3] A. Kawauchi, Classical Poincaré Conjecture via 4D topology, Available from: https://sites.google.com/view/ kawauchiwriting
[4] A. Kawauchi, Ribbonness of Kervaire's sphere-link in homotopy 4-sphere and its consequences to 2-complexes. Available from: https://sites.google.com/view/ kawauchiwriting
[5] A. Kawauchi, Whitehead aspherical conjecture via ribbon sphere-link. Available from: https://sites.google.com/view/ kawauchiwriting
[6] M. A. Kervaire, On higher dimensional knots, in: Differential and combinatorial topology, Princeton Math. Ser. 27 (1965), 105-119, Princeton Univ. Press.
[7] Ant. A. Klyachko, A funny property of a sphere and equations over groups, Comm. Algebra 21 (1993), 2555-2575.
[8] W. Magunus, A. Karrass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publisheres (1966).
[9] J. Rodríguez-Viorato and F. González-Acuña, On pretzel knots and Conjecture Z, Journal of Knot Theory and Its Ramifications, 25 (2016) 1650012.

