複数の被害関数を用いた地震による建物被害の評価

二神 郁哉¹⁾·杉本 賢二²⁾

1) 元·大阪市立大学 工学部

2) 大阪公立大学 大学院工学研究科 e-mail: sugimoto@omu.ac.jp

防災・減災施策の検討には、災害による建物被害量を把握することが重要である.本研究では、 3D都市モデルと想定地震地図、複数の被害関数を用いて地震による建物被害を推計すること で、被害関数の特徴を明らかにした.大阪府池田市を対象に上町断層帯地震を想定した推計の結 果、最近の地震被害にもとづく被害関数ほど半壊棟数が多くなり、旧耐震基準の建物ほどその傾 向が強いことが示された.

Key words:被害関数,地震,3D都市モデル,建物被害,地震規模

1. はじめに

国や自治体による防災・減災施策の検討において、災害による被害量を把握することは必須である.なかでも建 物被害は、建物そのものの物的被害だけでなく、建物倒壊による死傷者数や出火・延焼、住家被害による避難者数、 解体による災害廃棄物の発生など、発災直後や復旧段階において重要となる情報と密接に関わっている¹⁾.自治体 による被害想定では、過去に発生した災害の規模と建物被害の状況との関係から推定された被害関数が用いられ ることが多い.例えば、地震による被害関数は、計測震度や加速度といった地震動の強さを表す地震動指標と、全 壊や半壊などの建物損傷度合いに関するデータをもとに構築されている.

しかし、被害関数は過去の実績にもとづくため、地震観測網の多寡や被害調査方法の違いによりデータが制約されることがある.具体的には、兵庫県南部地震の被害にもとづく被害関数²は、地震動の計測地点が限られていたことに加えて、被害調査分類が統一されていなかったことから、関数を適用すると被害を過大評価する傾向が指摘されている³.一方で、観測網の整備や罹災証明の利用など多量の計測データが得られるようになった。そのため、兵庫県南部地震以降に発生した地震被害をもとに、いくつかの被害関数が提案されている。これらの関数は、異なる地震被害をもとに構築されているため、建築年代による被害度合いや地域性を表現できる特徴がある。ところが、多くの自治体では単一の被害関数による建物被害の想定が行われているのが現状である。なかには断層域をケース分けしたものや、出火や延焼において季節や時間帯を考慮した想定はあるが¹)、建物被害の想定は基本的に1つであり、被害想定の柔軟性が低くなっているという課題がある。

以上のように、防災・減災施策の検討において建物被害の把握は重要であるが、被害関数の特徴を考慮した被害 想定が求められる.そのため、本研究では、複数の被害関数を用いて地震による建物被害を推計することで、被害 関数の特徴を明らかにすることを目的とする.

2. 手法

図1に、本研究の分析フローを示す. 建物被害は、建物データと地震動指標、被害関数を用いて算出される. ま ず、建物データとして、Project PLATEAUの「3D都市モデル」⁴⁾を用いた. このデータは、航空測量等により得ら れたデータから建物等を3次元で生成した3Dモデルであり、一部の市町村では、構造種別や建築年といった都市 計画基礎調査の調査結果が付与されている.本研究では、「3D都市モデル」が公開されている市町村のうち、被害 関数で必要となる構造種別と建築年が属性情報として整備されている、大阪府池田市を対象とした. まず、建物デ

図1 本研究の分析フロー

ータのなかから,属性情報の構造種別を用いて木造のみを抽出した.これは、本研究で複数の被害関数を用いるため、結果の解釈をしやすくするように、構造種を限定したためである.以上の抽出により、池田市において推計の対象となった建物は11,409棟あり、そのうち旧耐震基準(建築年が1981年以前)は6,960棟、新耐震基準(建築年が1982年以降)は4,449棟であった.続いて、後述の地震動指標データの空間解像度である250mメッシュ単位で、被害関数に対応する建築年代の区分別に建物棟数を集計した.図2に、250mメッシュ単位で集計した建物棟数の分布を示す.池田市に該当する250mメッシュ410個のうち、メッシュ内に建物が存在するメッシュは206個であり、そのうち最小は1[棟/メッシュ]、最大179[棟/メッシュ]、平均で55.4 [棟/メッシュ]であった.

次に、地震動指標データとして、防災科学技術研究所の「全国地震動予測地図」を用いた.これは、将来発生す るおそれのある地震による地震の揺れの予測結果を可視化したものであり、メッシュ単位のデータは「地震ハザー ドステーション」において入手可能である⁵⁾.本研究では、想定地震として、対象の池田市において最も揺れが強 くなると予測されている「上町断層帯を対象とした想定地震動地図データ」の「ケース 2」を用いた.このとき、 被害関数で使用する地震動指標は、計測震度(SI)あるいは最大速度(PGV) [cm/s]である.前者については、「想定地 震地図データ」から得た 250m メッシュ単位の計測震度を使用する.一方で、PGV は、以下の式(1)により、PGV

文献	地震動指標	7+	全	壊	全半壊	
		建柴平代	λ	ζ	λ	ζ
村尾・山崎 (2002) ⁶⁾	最大速度	- 1950	4.76	0.43	4.47	0.469
		1951 - 1970	4.84	0.413	4.61	0.419
		1971 - 1981	5.15	0.504	4.9	0.449
		1982 - 1994	5.45	0.534	5.18	0.521
堀江 (2004) ⁷⁾	最大速度	- 1945	4.36	0.3	4.23	0.31
		1946 - 1955	4.59	0.35	4.47	0.31
		1956 - 1960	4.52	0.38	4.4	0.36
		1961 - 1964	4.63	0.37	4.42	0.32
		1965 - 1971	4.72	0.35	4.58	0.37
		1972 - 1981	4.98	0.41	4.85	0.41
		1982 - 1994	6.23	0.9	5.96	0.88
翠川ら (2011) ⁸⁾	計測震度	- 1981	6.469	0.137	6.351	0.224
		1982 -	6.671	0.195	6.442	0.205
	計測震度	- 1962	6.25	0.27	5.9	0.32
		1963 - 1971	6.32	0.294	5.94	0.302
中央防災会議 (2012) ¹⁾		1972 - 1980	6.48	0.335	6.06	0.336
		1981 - 1989	6.95	0.44	6.57	0.44
		1990 - 2001	7.15	0.44	6.82	0.44
		2002 -	7.35	0.44	6.97	0.44
竹内ら (2018) ⁹	計測震度	- 1950	6.455	0.444	6.162	0.506
		1951 - 1960	6.636	0.465	6.368	0.529
		1961 - 1970	6.799	0.409	6.554	0.466
		1971 - 1980	6.995	0.326	6.778	0.372
		1981 - 1990	7.22	0.304	7.033	0.345
		1991 - 2000	7.388	0.314	7.223	0.352
		2001 -	7.697	0.31	7.558	0.318
鳥澤ら (2021) ³⁾	計測震度	1962 - 1971	6.47	0.4	6.03	0.45
		1972 - 1981	6.67	0.48	6.11	0.49
		1982 - 1990	6.98	0.56	6.26	0.54
		1991 - 2000	7.24	0.59	6.6	0.65
		2001 - 2016	7.49	0.62	7.08	0.68

表1 使用した被害関数の地震動指標および建築年代別パラメータ

を算出した.

$PGV = BV \times ARV$

(1)

ここで, BVは,工学的基盤(Vs=400 [cm/s])から地表に至る最大速度 [cm/s]であり,上述の上町断層帯を想定した「想定地震地図データ」を使用する. ARVは,工学的基盤から地表に至る最大速度の増幅度であり,「全国地震動予測地図」の「地盤地図データ」を使用した.図3に,地震動指標の分布を示す.計測震度は南部ほど大きくなり,最大で6.5 であり,これは震度階級で震度7に相当する.また,最大速度が大きいメッシュは,計測震度に比べて南部で広く偏在しており,最大で172[cm/s]であった.

以上により整備された 250m メッシュ単位での建築年代別の建物棟数と地震動指標(SI あるいは PGV)を入力と して,既往研究による被害関数を適用することで,地震による全壊率あるいは全半壊率が推計される. **表**1に,各 関数で使用する地震動指標と建築年代別のパラメータを示す.各文献で建築年代の区分が異なり,例えば,旧耐震 基準に相当する期間(1981 年以前)は,堀江らⁿでは6区分であるのに対し,翠川ら⁸⁾では1区分である.また,文 献の出版年が新しいほど最近の地震を対象としているため,新耐震基準に相当する期間(1982 年以降)の建築年代の 区分が多くなっている.**表2**に,各文献が関数構築に用いた建物被害データあるいは建物データを示す.各文献で 対象とする地震や地域が異なり,さらに竹内らは,地震による建物被害データのほか,北海道の建物を対象とした

21

文献	関数構築に使用した建物被害データ/建物データ				
村尾・山崎 (2002) ⁶⁾	兵庫県南部地震(1995) [神戸市灘区]				
堀江 (2004) ⁷⁾	兵庫県南部地震(1995) [西宮市]				
翠川ら (2011) ⁸	宮城県北部地震(2003),新潟県中越地震(2004),福岡県西方沖地震(2005),				
	能登半島地震(2007),新潟県中越沖地震(2007),岩手・宮城内陸地震				
	(2008), 岩手県沿岸北部地震(2008)				
中央防災会議 (2012) 1)	兵庫県南部地震(1995),鳥取県西部地震(2000),芸予地震(2001)など ^{注)}				
竹内ら(2018) ⁹	北海道建設部住宅局建築指導課および日本木造住宅耐震補強事業者協同組合				
	による耐震診断結果データ				
鳥澤ら (2021) ³⁾	熊本地震(2018) [益城町, 宇城市]				

表2 被害関数の構築に使用した建物被害データ/建物データ

注) 使用した建物被害データは明記されていないため, 文献¹⁰⁾から推定

耐震診断結果を用いている.積雪寒冷地仕様の建物は、本州に比べ堅牢であるため一般的に耐震性が高い⁹.そのため、竹内らによる関数を用いることで、耐震性が高い建物を想定した計算が可能になると考えられる.

被害関数では、ある地震動指標 x に対して建物被害が発生する確率 P(x)は、以下の式(2)による標準正規分布の 累積分布関数Φを用いて算出される.

$$P(x) = \Phi\{(x - \lambda) / \zeta\}$$
⁽²⁾

「畄位・挿」

ここで、んとくは正規分布のパラメータであり、それぞれ平均と標準偏差に相当する³⁾.また、地震動指標に最大 速度(PGV)を用いる場合は、xはPGVの自然対数ln(PGV)に変換して代入する.また、P(x)は、全壊の損傷となる 確率(全壊率)と、半壊以上の損傷となる確率(全半壊率)の2種類がある.

最後に、メッシュ別の全壊・半壊棟数を集計する.メッシュ単位で、被害関数により算出された建築年代別の全 壊率あるいは全半壊率と、建築年代別の建物棟数とを乗じることで、全壊棟数と全半壊棟数が推計される.このと き、全半壊棟数は半壊以上(全壊を含む)の被害となる棟数であることから、全半壊棟数から全壊棟数を差し引くこ とで半壊棟数が求められる.

3. 結果

表3に、表1で示した被害関数による全壊・半壊棟数の推計結果を示す.まず,全壊棟数は関数により幅があ り、222~1,042棟と推計された.とりわけ,竹内ら⁹を適用した場合222棟と極端に少なく,新耐震の全壊は0棟 であった.これは,前述したように北海道の建物が堅牢である構造上の要因により,被害棟数が少なくなったと考 えられる.一方で,兵庫県南部地震の被害をもとに構築された村尾・山崎⁶⁰や堀江⁷は大きい値となり,それ以外 は600棟前後で,概ね近年の地震被害をもとにした関数ほど全壊棟数は小さくなる傾向が見られた.次に,半壊棟 数については480~2,089棟の推計となり,全壊棟数が少なかった竹内ら⁹⁰を適用した場合でも717棟と,ほかと 比べても大きな差は見られなかった.また,全壊棟数とは逆に,近年提案された関数ほど被害棟数が大きくなるこ とがわかった.とりわけ,熊本地震の被害データをもとにした鳥澤ら³⁰の関数では2,089棟となっているように,

						[半位・旅]
被害関数	全壊			半壊		
	旧耐震	新耐震	合計	旧耐震	新耐震	合計
村尾・山崎 (2002) ⁶⁾	602	263	865	465	337	802
堀江 (2004) ⁷⁾	885	157	1042	348	132	480
翠川ら (2011) ⁸⁾	561	118	679	522	742	1264
中央防災会議 (2012) ¹⁾	563	68	631	1014	176	1190
竹内ら (2018) ⁹	222	0	222	698	19	717
鳥澤ら (2021) ³⁾	467	101	568	1371	718	2089

表3 全壊・半壊棟数の推計結果

旧耐震基準の建物がより半壊と判断されることが示された.この理由として,そもそも関数構築時において旧耐震 建物が建設されてから年数が経過しており,それに伴い耐震性が低下していることが考えられる.

図4に、各被害関数による全壊棟数の分布を示す.ここでは比較として、最も棟数が少なかった竹内ら⁹、中程度の鳥澤ら³、最も大きかった堀江⁷⁷を用いた.竹内ら⁹⁰の推計結果は、全体的に全壊棟数が少ないメッシュが多くなっているが、これは前述のように関数構築に堅牢な北海道の建物データが使用されていることが主因である. 次に、鳥澤ら³⁰を適用した結果では、全壊棟数が 10以上となるメッシュや 20を超えるメッシュが出現する.さらに、堀江⁷⁰の被害関数では、鳥澤ら³⁰でもっとも大きくなったメッシュで 40棟を超えているほか、南東部でも全壊棟数が多いメッシュがみられる.これは、堀江の関数構築には、住家被害が甚大であった兵庫県南部地震の西宮市の建物被害データが使用されていることが影響している⁷⁰.

図5に、メッシュ単位別の全半壊率と平均建築年との関係を示す.ここで縦軸の全半壊率は、メッシュ内の建物 棟数に占める半壊以上の損傷となる棟数の割合を表している.村尾・山崎のや堀江⁷は平均建築年が1990年前後 で山となり、さらにそれらが塊として分布している.しかし、中央防災会議¹⁾や鳥澤ら³⁾による全半壊率は、メッ

図4 被害関数による全壊棟数の分布

図5 メッシュ単位別の全半壊率(縦軸)と平均建築年(横軸)との関係

シュの平均築年数が古くなるほど全半壊率が高くなる傾向が直線として分布している. すなわち, 最近の地震ほど 被害データの新耐震基準のサンプルが増加し, 新耐震基準の中でも建築年代の区分が多くなったことで, より精緻 に推計できるようになったと推測される.

ただし、以上の推計結果には、メッシュ内の建物棟数により被害量が過大あるいは過小に算出される可能性に留 意が必要である.例えば、全壊率を30%と仮定した場合、メッシュ内の建物棟数が100棟であれば全壊棟数は30 棟であるが、建物棟数が2棟であれば全壊棟数は1棟となる.ところが、メッシュ内の建物棟数に占める全壊棟数 の割合は後者で50%であり、これは被害関数による全壊率30%を上回り、被害が過大に評価されている.したが って、山間部のように建物棟数が極端に少ないメッシュは、周辺のメッシュと統合して建物棟数を確保する必要が ある.推計のための適切な棟数やメッシュサイズの検討は、今後の課題としたい.

4. おわりに

本研究では、複数の被害関数を用いて地震による建物被害を推計することにより、関数の特徴を明らかにするこ とを目的とした.大阪府池田市を対象に、上町断層帯の地震を想定した推計の結果、最近の地震被害にもとづく被 害関数ほど半壊棟数が多くなり、旧耐震基準の建物ほどその傾向が強いことが示された.また、メッシュ単位での 全半壊率と平均建築年との比較により、新耐震基準のなかでも建築年代の区分が多くなる関数ほど、被害率と築年 数との関係が線形となり、両者の関係が強く表される結果を得た.

今後の課題として、以下の2点がある.まず、推計には使用した建物データのうち、建築年が明らかな建物だけ を対象とした.より精緻な推計には、すべての建物について建築年や構造種別が付与されたデータを用いることが 望ましい.2点目の課題として、棟数が少ない場合には被害率が過大あるいは過小に評価されることになるため、 他地域での適用による結果を踏まえた、適切な棟数やメッシュサイズの検討が挙げられる.

謝辞:本研究は,環境省・(独)環境再生保全機構の環境研究総合推進費(JPMEERF20231005)により実施した。

引用文献

- 1) 中央防災会議 (2012): 南海トラフの巨大地震 建物被害・人的被害の被害想定項目及び手法の概要. https://www. bousai.go.jp/jishin/nankai/taisaku/pdf/2_2.pdf (accessed 2014/10/04)
- 村尾修・山崎文雄 (2000):自治体の被害調査結果に基づく兵庫県南部地震の建物被害関数,日本建築学会構造 系論文集,第 527 号, pp.189-196.
- 3) 鳥澤一晃・松岡昌志・堀江啓・井ノロ宗成・山崎文雄 (2021): 2016 年熊本地震における広範囲の地震動強さに 対応した複数自治体の罹災証明データに基づく建物被害関数の構築,日本地震工学会論文集,第21巻,第5号, pp.98-118.
- 4) 国土交通省: Project PLATEAU, https://www.mlit.go.jp/plateau/ (accessed 2024/09/14).
- 5) 防災科学技術研究所: 地震ハザードステーション, https://www.j-shis.bosai.go.jp (accessed 2024/09/14).
- 6) 村尾修・山崎文雄 (2002): 震災復興都市づくり特別委員会調査データに構造・建築年を付加した兵庫県南部地 震の建物被害関数,日本建築学会構造系論文集,第67巻,555号,pp.185-192.
- 7) 堀江啓 (2004): 阪神・淡路大震災における木造建物の層破壊被害, 地震ジャール, 第38号, pp30-40.
- 8) 翠川三郎・伊東佑記・三浦弘之 (2011): 兵庫県南部地震以降の被害データに基づく建物被害関数の検討,日本 地震工学会論文集,第11巻,第4号, pp.34-47.
- 竹内慎一・岡田成幸・中嶋唯貴(2018)地域性及び時代性を考慮した木造建築物の地域地震被害率関数構築法の提案,日本建築学会構造系論文集,83巻,753号,pp.1549-1559
- 10) 内閣府 (2004): 首都直下地震に係る被害想定手法について. https://www.bousai.go.jp/jishin/syuto/pdf/shiryou3 .pdf (accessed 2024/10/04).