Friday Seminar on Knot Theory

Friday Seminar on Knot Theory

セミナーの様子はZoomでも配信します。  (配信内容の録画等はご遠慮ください。Zoomでの参加を希望される方は、次のリンクから登録フォームを送信してください。)

セミナーへのZoomでの参加の登録

世話役 秋吉 宏尚  (akiyoshi@omu.ac.jp)

今後の予定

  • 1月31日  Sang-hyun Kim 氏

2024年度

日時 2025年1月31日(金)   16:00~17:00
講演者  (所属) Sang-hyun Kim (KIAS)
タイトル Smoothing one-dimensional actions of countable groups with subexponential growth
場所 数学小講究室B  (理学部棟F405)  &  Zoom
アブストラクト We prove that if a countable group does not contain a finitely generated subgroup of exponential growth, then every topological action of the group on a compact connected one-manifold can be blown-up to a C1 action. The proof is based on a functional characterisation of such groups. This is joint work with Nicolás Matte Bon, Mikael de la Salle and Michele Triestino.

2023年度

日時 2024年1月26日(金)   16:00~17:00
講演者  (所属) 児玉 悠弥 (東京都立大学)
タイトル Divergence properties of Thompson-like groups
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト Gersten defined a function called the divergence function for geodesic metric spaces. It is known that the order of this function is a quasi-isometric invariant (and hence is also a quasi-isometric invariant of finitely generated groups), and that the linearity of the order corresponds to the " degree of connectedness at infinity". In 2019, Golan--Sapir showed that the orders of functions of three groups, called the Thompson's groups, are linear. They then asked what is the order of the functions of Thompson-like groups. In this talk, I will discuss recent progress on this question.
日時 2024年1月19日(金)   16:00~17:00
講演者  (所属) 姫野 圭佑 (広島大学)
タイトル Hyperbolic knots whose upsilon invariants are convex
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト For a knot in $3$-sphere, the upsilon invariant is a concordance invariant which can be calculated from the full knot Floer complex. The invariant is a continuous piecewise linear function on $[0,2]$, and symmetric along the line $t=1$. Borodzik and Hedden gave the question of for which knots is the upsilon invariant a convex function. In this talk, we construct infinitely many mutually non-concordant hyperbolic knots whose upsilon invariants are convex.
日時 2023年12月15日(金)   16:00~17:00
講演者  (所属) 片山 拓弥 (明治大学)
タイトル Bicorn curves on closed surfaces
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト A bicorn curve between two simple closed curves on a closed surface is a concatenation of their subarcs whose endpoints coincide. In 2017, Przytycki and Sisto gave a simple proof for acylindrical hyperbolicity of the mapping class groups of closed orientable surfaces by using bicorn curves. In this talk, I will explain how to use bicorn curves in order to prove Hempel--Lickorish inequalities, Gromov hyperbolicity for the curve graphs and the bounded geodesic image theorem for nonorientable surfaces. The Hempel--Lickorish inequality states that the distance between two essential simple closed curves on a closed orientable surface is bounded above by a logarithmic function of the geometric intersection number. Masur and Minsky in 1999 described a quasi-geodesic word for any element of the mapping class groups. In their theory the role of Gromov hyperbolicity and the bounded geodesic image theorem is pivotal. This talk is based on joint work with Erika Kuno.
日時 2023年12月1日(金)   16:00~17:00
講演者  (所属) John R. Parker (Durham University)
タイトル Margulis regions for screw-parabolic maps in real and complex hyperbolic space
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト There is a celebrated result of Margulis about discrete subgroups of isometries of Riemannian manifolds with non-positive curvature. The result says that there is a constant only depending on the manifold so that, for each point on the manifold, the group generated by those isometries with displacement less than this constant is particularly simple. For many points this group is trivial, but the sets where it is infinite are called Margulis regions. In this talk, I will discuss the Margulis regions associated to screw parabolic maps with infinite order rotational part in hyperbolic 4-space. A particularly striking aspect of these results is the way they depend on the continued fraction expansion associated to the rotational part of the map, and the use of results from Diophantine approximation.
日時 2023年11月24日(金)   16:00~17:00
講演者  (所属) 坂井 健人 (大阪大学)
タイトル Degeneration of hyperbolic ideal polygons along harmonic map rays
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト Let S be a surface of hyperbolic type and X be a complex structure on S. If S is a closed surface, Wolf constructed a homeomorphism between the Teichmüller space T(S) of S and the vector space of holomorphic quadratic differentials on X via harmonic maps between surfaces. A ray in the vector space of the holomorphic quadratic differentials determines the one-parameter family of hyperbolic surfaces through that homeomorphism. The one-parameter family is called by the harmonic map ray. Wolf showed that a harmonic map ray converges to an R-tree in the sense of equivariant Gromov-Hausdorff convergence if taking a lift to the universal covering and properly rescaling the hyperbolic metrics. In this talk, I will introduce the analogue result in the case that S is a hyperbolic ideal polygon, which is based on Gupta's result about the coordinate of the Teichmüller space of hyperbolic surfaces with crowns via harmonic maps. We consider a pointed Gromov-Hausdorff convergence instead of the equivariant version, since a hyperbolic ideal polygon does not have any nontrivial action by the surface group.
日時 2023年10月27日(金)   16:00~17:00
講演者  (所属) 安田 順平 (大阪大学)
タイトル BMW surfaces and Alexander theorem for surfaces in the 4-ball
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト An n-knit is a tangle in a cylinder obtained from an n-braid by splicing for some crossings. BMW (Birman-Murakami-Wenzl) surfaces are properly embedded surfaces in the 4-ball which have motion pictures consisting of n-knits. These surfaces are generalizations of braided surfaces. In this talk, we will outline the construction of BMW surfaces from BMW charts due to Nakamura. As a main result, we state that every properly embedded surface in the 4-ball with a non-empty boundary is ambiently isotopic to a BMW surface.
日時 2023年9月8日(金)   14:00~15:00
講演者  (所属) Michal Jablonowski  (University of Gdansk)
タイトル Isotopic immersions of surfaces and Kirby moves
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト We consider smooth immersions of surfaces in the four-space up to ambient isotopy, focusing on understanding their relationships with their complements in the ambient space. Beginning with a concise review of fundamental definitions and essential facts, we show how to obtain a Kirby diagram of the complement from a planar singular marked graph diagram of the immersed surface. We also discuss the consequences of this correspondence.
日時 2023年7月14日(金)   16:00~17:00
講演者  (所属) 阪田 直樹  (お茶の水女子大)
タイトル Searching entanglement parts of trefoil knots
場所 数学中講究室  (理学部棟F415)  &  Zoom
アブストラクト In ring polyethylene melts of trefoil knots, the structure is complex, with the crystalline and the amorphous states coexisting. In particular, as confirmed by united atom molecular dynamics simulations, the entanglements inhibit crystallization. In studying the detailed structures of the melts, it became necessary to investigate where the entanglement is located in a ring polyethylene polymer. In this talk, we will introduce the results of computer experiments to find the entangled parts of embedded trefoil knots. In addition, we will discuss how to give a mathematical definition of entanglement parts in general.
日時 2023年6月23日(金)  16:00~17:00
講演者  (所属) 吉田 はん  (群馬高専)
タイトル Commensurators of Lobell polyhedra
場所 数学中講究室  (理学部棟F415) &  Zoom
アブストラクト 非数論的クライン群$\Gamma < \mathrm{Isom}(\mathbb{H}^3)$に対して$\Gamma$のcommensurator $C(\Gamma) < \mathrm{Isom}(\mathbb{H}^3)$は$\Gamma$とcommensurableな群をすべて含む離散群である.cocompactなクライン群のcommensuratorの計算例はほとんど知られていない.$L_n$をL\"{o}bell多面体という$2n+2$個の面で囲まれたcompactな多面体とする.この講演では,$n$が十分大きいとき,$L_n$の各面に関するreflectionで生成される群$\Gamma(L_n)$のcommensurator $C(\Gamma(L_n))$の計算例について紹介する.
日時 2023年6月9日(金)   16:00~17:00
講演者  (所属) 新井 克典  (大阪大学)
タイトル On a groupoid rack coloring
場所 数学中講究室  (理学部棟F415) &  Zoom
アブストラクト A spatial surface is a compact surface embedded in the 3-sphere. We assume that each connected component has non-empty boundary. Spatial surfaces are represented by diagrams of spatial trivalent graphs. In this talk, we introduce the notion of a groupoid rack, which is an algebraic structure that can be used for colorings of diagrams of oriented spatial surfaces. We show that for a given groupoid rack, the number of colorings is an invariant of oriented spatial surfaces. Furthermore, a groupoid rack has a universal property on colorings for diagrams of spatial surfaces.

過去のFriday Seminar on Knot Theory