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1. Mixed-type structures of 4-dimensional Lorentzian vector

spaces

X : an oriented 4-dimensional vector space,

hX : a symmetric and indefinite bilinear form of X with signature (3,1),

(e1, e2, e3, e4): an ordered basis of X giving the orientation of X s.t.

hX(ei, ej) = 0 (i 6= j),
hX(ei, ei) = 1 (i = 1, 2, 3), hX(e4, e4) = −1.

BX : the set of ordered bases of X as (e1, e2, e3, e4).



θij := ei ∧ ej,
ĥX : a bilinear form of

V2X defined by

ĥX(θij, θkl) = hX(ei, ek)hX(ej, el)− hX(ei, el)hX(ej, ek).

Θ±,1 :=
1√
2
(θ12 ± θ34), Θ±,2 :=

1√
2
(θ13 ± θ42), Θ±,3 :=

1√
2
(θ14 ± θ23).

These are light-like and we have

ĥX(Θε,i,Θε0,j) = 0 (ε, ε
0 ∈ {+,−}, 1 5 i < j 5 3),

ĥX(Θ+,i,Θ−,i) = 1 (i = 1, 2), ĥX(Θ+,3,Θ−,3) = −1.
We see that ĥX is a symmetric and indefinite bilinear form of

V2X with

signature (3,3).



Remark

• If hX is positive-definite,
then noticing a double covering SO(4) −→ SO(3)× SO(3),
we have a decomposition

V2X =
V2
+X ⊕

V2
−X ,

where
V2
+X ,

V2
−X are subspaces of

V2X with dim
V2
±X = 3 s.t.V2

+X = hE+,1, E+,2, E+,3i,
V2
−X = hE−,1, E−,2, E−,3i.

• If hX has signature (2,2),
then noticing a double covering SO0(2, 2) −→ SO0(1, 2)× SO0(1, 2),
we have

V2X =
V2
+X ⊕

V2
−X ,

where
V2
+X ,

V2
−X are subspaces of

V2X with dim
V2
±X = 3 s.t.V2

+X = hE−,1, E+,2, E+,3i,
V2
−X = hE+,1, E−,2, E−,3i.



K: a linear transformation of X .

We call K a mixed-type structure of X

if K has invariant subspaces X± of X with dimX± = 2 s.t.

• X± are eigenspaces of K2 so that ∓1 are the corresponding eigenvalues,
respectively,

• K|X− is not the identity map.

K: a mixed-type structure of X .

We say that K is compatible with hX if K satisfies

• each nonzero element of X+ is space-like,
• (K|X±)∗hX = ±hX ,
• X± are perpendicular to each other.



K: a mixed-type structure of X compatible with hX .

We say that K is compatible with the orientation of X

if (e1, K(e1), e3, K(e3)) ∈ BX for any unit vector e1 ∈ X+ and any space-like
and unit vector e3 ∈ X−.

K+: a mixed-type structure of X compatible with hX and the orientation of X .

We see that
1√
2
(e1 ∧K+(e1) + e3 ∧K+(e3)) (]1)

is light-like and determined by K+, and does not depend on the choice of a pair

(e1, e3).



K−: a mixed-type structure of X s.t.

• K− is compatible with hX ,
• K− is not compatible with the orientation of X .

We see that
1√
2
(e1 ∧K−(e1) + e3 ∧K−(e3)) (]2)

is light-like and determined by K−, and does not depend on the choice of
(e1, e3).



Example

(e1, e2, e3, e4) ∈ BX ,
K+: a linear transformation of X defined by

(K+(e1) K+(e2) K+(e3) K+(e4)) = (e1 e2 e3 e4)

⎡⎢⎢⎢⎢⎣
0 −1 0 0
1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎦.

=⇒ (K2+(e1) K
2
+(e2) K

2
+(e3) K

2
+(e4)) = (e1 e2 e3 e4)

⎡⎢⎢⎢⎢⎣
−1 0 0 0

0 −1 0 0
0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦.



X+ := he1, e2i, X− := he3, e4i.
=⇒ K+ is a mixed-type structure, that is, K+ satisfies the above conditions:

• K+(X+) = X+, K+(X−) = X−,
• X± are the ∓1-eigenspaces of K2+,
• K+|X− 6= idX−.
In addition, K+ is compatible with hX :

• (K+|X+)∗hX = hX (hX(K+(ei), K+(ej)) = hX(ei, ej) for i, j = 1, 2),

• (K+|X−)∗hX = −hX by
hX(K+(e3), K+(e3)) = hX(e4, e4) = −hX(e3, e3),
hX(K+(e4), K+(e4)) = hX(e3, e3) = −hX(e4, e4),
hX(K+(e3), K+(e4)) = hX(e4, e3) = −hX(e3, e4),

• X+ ⊥ X−.
Since (e1, K+(e1), e3, K+(e3)) = (e1, e2, e3, e4) ∈ BX , K+ is compatible with
the orientation of X .



K−: a linear transformation of X defined by

(K−(e1) K−(e2) K−(e3) K−(e4)) = (e1 e2 e3 e4)

⎡⎢⎢⎢⎢⎣
0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 −1 0

⎤⎥⎥⎥⎥⎦.
=⇒ K− is a mixed-type structure of X s.t.

• K− is compatible with hX ,
• K− is not compatible with the orientation of X .



X 0: an oriented 2-dimensional subspace of X s.t. each nonzero element of X 0

is space-like.

=⇒ ∃K+: a mixed-type structure of X compatible with hX and

the orientation of X s.t.

• X 0 = X+,
• for a nonzero vector e1 ∈ X+,
(e1, K+(e1)) gives the orientation of X

0 = X+.

∃K−: a mixed-type structure of X compatible with hX and

not compatible with the orientation of X s.t.

• X 0 = X+,
• for a nonzero vector e1 ∈ X+,
(e1, K−(e1)) gives the orientation of X 0 = X+.



X 00: an oriented 2-dimensional subspace of X which has a time-like vector of X .

=⇒ ∃K+: a mixed-type structure of X compatible with hX and

the orientation of X s.t.

• X 00 = X−,
• for a space-like vector e3 ∈ X−,
(e3, K+(e3)) gives the orientation of X

00 = X−.

∃K−: a mixed-type structure of X compatible with hX and

not compatible with the orientation of X s.t.

• X 00 = X−,
• for a space-like vector e3 ∈ X−,
(e3,−K−(e3)) gives the orientation of X 00 = X−.



2. Space-like surfaces in Lorentzian 4-manifolds

M : a manifold,

E: an oriented vector bundle over M of rank 4.

h: an indefinite metric of E with signature (3, 1),

∇: a connection of E s.t. ∇h = 0.
ĥ: the metric of

V2E induced by h.
=⇒ ĥ has signature (3, 3).

∇̂: the connection of V2E induced by ∇.
=⇒ ∇̂ĥ = 0.



E0: an oriented subbundle of E of rank 2 s.t. each nonzero element of each fiber
of E is space-like.

Then E0 defines mixed-type structures K± of E, i.e., sections of End (E)
which give mixed-type structures of the fiber Ea of E defined by the fiber E

0
a

of E0 for each a ∈M .
Mixed-type structures K± of E defined by E0 give light-like sections Θ± ofV2E by (]1) and (]2).



M : a Riemann surface,

N : an oriented 4-dimensional Lorentzian manifold,

F :M −→ N : a space-like and conformal immersion.

E := F ∗TN .
We see that F gives a subbundle E0 of E by E0 = F ∗(dF (TM)).

KF,±: the mixed-type structures of E given by E0.
We call each of light-like sections ΘF,± of

V2E given by KF,± a lift of F .



w = u +
√
−1v: a local complex coordinate of M ,

T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
.

Suppose that F has zero mean curvature vector.

=⇒ ∇T1T1 +∇T2T2 = 0.

• We say that F is isotropic
if we can choose w s.t.

h(σ(T1, T1),σ(T1, T1)) = −h(σ(T1, T2),σ(T1, T2)),
h(σ(T1, T1),σ(T1, T2)) = 0.

• We say that F is strictly isotropic
if we can choose w s.t. KF,+σ(T1, T1) = σ(T1, T2).

Remark If F is strictly isotropic, then F is isotropic.



Ψ := dF (∂/∂w).

=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw.

We can define a complex quartic differential Q on M by

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw.

If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that Q is holomorphic.



Theorem

N : an oriented 4-dimensional Lorentzian manifold,

M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion with zero mean

curvature vector.

Then F is isotropic if and only if one the following holds :

(a) Q ≡ 0;
(b) F is strictly isotropic, by rechoosing the orientation of N if necessary.



Proof

ν1, ν2: normal vector fields of F s.t.

h(ν1, ν1) = 1, h(ν2, ν2) = −1, h(ν1, ν2) = 0.

We represent σ(Tk, Tl) as σ(Tk, Tl) = c
1
klν1 + c

2
klν2.

Suppose that F is isotropic.

Then we obtain ((c111)
2 − (c211)2)((c112)2 − (c211)2) = 0.

• If (c111)2 = (c211)2, then we have (c211, c212) = ±(c111, c112), i.e., Q ≡ 0.
• If (c112)2 = (c211)2, then we have (c211, c212) = ±(c112, c111) and then
F is strictly isotropic, by rechoosing the orientation of N if necessary.

If either Q ≡ 0 or F is strictly isotropic, then F is isotropic. ¤



Theorem N , M , F : as in the previous theorem.

Then the following are mutually equivalent :

(a) Q ≡ 0;
(b) ĥ(∇̂TkΘF,+, ∇̂TkΘF,+) = 0,

ĥ(∇̂TkΘF,−, ∇̂TkΘF,−) = 0,
ĥ(∇̂TkΘF,+, ∇̂TkΘF,−) = 0 for k = 1, 2;

(c) the second fundamental form is light-like or zero.

Remark

Suppose that F is strictly isotropic.

Then we obtain ĥ(∇̂TkΘF,+, ∇̂TkΘF,−) = 0,
while we do not necessarily obtain ĥ(∇̂TkΘF,ε, ∇̂TkΘF,ε) = 0 for ε ∈ {+,−}.



Remark

N : an oriented 4-dimensional Riemannian or neutral manifold,

F :M −→ N : a space-like and conformal immersion with zero mean curvature

vector.

Then by the bundle decomposition
V2E = V2+E ⊕V2−E with E = F ∗TN ,

we have ĥ(∇̂TkΘF,+, ∇̂TkΘF,−) = 0.
We see that F is strictly isotropic if and only if a suitable one of ΘF,± is
horizontal.



Remark

N : an oriented 4-dimensional neutral manifold,

M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion with zero mean curvature

vector.

Then we have analogues of results mentioned in the previous remark.

In addition, if F is isotropic and if none of the covariant derivatives of ΘF,±
become zero,

then the covariant derivatives are light-like and the second fundamental form of

F is light-like or zero.



3. Time-like surfaces in Lorentzian 4-manifolds

M : a Lorentz surface,

N : an oriented 4-dimensional Lorentzian manifold,

F :M −→ N : a time-like and conformal immersion,

E := F ∗TN .
We see that F gives a subbundle E00 of E by E00 = F ∗(dF (TM)).

E0: the subbundle of E given by the orthogonal complement of E00,
KF,±: the mixed-type structure of E given by E0.
We call each of light-like sections ΘF,± of

V2E given by KF,± a lift of F .



w = u + jv: a local paracomplex coordinate of M ,

T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
.

Suppose that F has zero mean curvature vector.

=⇒ ∇T1T1 = ∇T2T2.

• We say that F is isotropic
if we can choose w s.t.

h(σ(T1, T1),σ(T1, T1)) = h(σ(T1, T2), σ(T1, T2)),

h(σ(T1, T1),σ(T1, T2)) = 0.

• We say that F is strictly isotropic
if we can choose w s.t. KF,+σ(T1, T1) = σ(T1, T2).

Remark If F is strictly isotropic, then F is isotropic.



Ψ := dF

µ
∂

∂w

¶
=
1

2
(T1 + jT2).

=⇒ ∇∂/∂w(Ψdw) = σ

µ
∂

∂w
,
∂

∂w

¶
dw.

We can define a complex quartic differential Q on M by

Q := h

µ
σ

µ
∂

∂w
,
∂

∂w

¶
, σ

µ
∂

∂w
,
∂

∂w

¶¶
dw ⊗ dw ⊗ dw ⊗ dw.

We see that Q ≡ 0 if and only if F is totally geodesic.
If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that Q is holomorphic.



Theorem

N : an oriented 4-dimensional Lorentzian manifold,

M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion with zero mean

curvature vector.

Then F is isotropic if and only if F is strictly isotropic, by rechoosing

the orientation of N if necessary.

Remark

Suppose that F is strictly isotropic.

Then we obtain ĥ(∇̂TkΘF,+, ∇̂TkΘF,−) = 0,
while we do not necessarily obtain ĥ(∇̂TkΘF,ε, ∇̂TkΘF,ε) = 0 for ε ∈ {+,−}.
If ĥ(∇̂TkΘF,ε, ∇̂TkΘF,ε0) = 0 for k = 1, 2 and ε, ε

0 ∈ {+,−},
then we have σ(T1, T2) = ±σ(T1, T1).



4. The images of the lifts by the curvature tensor

R: the curvature tensor of ∇:
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

R̂: the curvature tensor of ∇̂.
=⇒ R̂(X1, X2)(Y1 ∧ Y2) = (R(X1, X2)Y1) ∧ Y2 + Y1 ∧R(X1, X2)Y2.

M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion,

(e1, e2): a local ordered orthonormal frame field of TM giving the orientation

of M .



Theorem (A, 2020)

F :M −→ N : a space-like and conformal immersion with zero mean

curvature vector s.t. R̂(e1, e2)ΘF,± = 0.
Then the following hold :

(a) Q is holomorphic;

(b) if Q ≡ 0 and if dω⊥ = 0 with ω⊥ := h(∇e3, e4),
then F is strictly isotropic, by rechoosing the orientation of N

if necessary ;

(c) if F is strictly isotropic and if F is not totally geodesic on any open set

of M , then the connection forms ω := h(∇e1, e2) and ω⊥ satisfy
d ∗ ω = 0 and dω⊥ = 0 for a suitable (e1, e2), and
the 2nd fundamental form of F is constructed by a solution of

an over-determined system s.t. the compatibility condition is given by

d ∗ ω = 0 and dω⊥ = 0.



Proof of (b) of the theorem

Suppose Q ≡ 0.
=⇒ The shape operator of a light-like normal vector field ν of F vanishes.

U : a neighborhood of a point of M where the 2nd fundamental form does

not vanish,

(ũ, ṽ): local coordinates on U s.t. ∂/∂ũ, ∂/∂ṽ are in principal directions of F

w.r.t. a light-like normal vector field ι satisfying h(ι, ν) = −1.
The induced metric g on M by F is represented as g = Ã2dũ2 + B̃2dṽ2.

Since R̂(e1, e2)ΘF,± = 0, we have (R(e1, e2)ei)⊥ = 0 (i = 1, 2).

Since dω⊥ = 0, we can find a function γ defined on a neighborhood of each
point of M s.t. ω⊥ = −dγ.
In addition, we obtain γũ = h(∇∂/∂ũι, ν) and γṽ = h(∇∂/∂ṽι, ν).



k: a positive-valued function on U s.t. k and −k are principal curvatures of F
w.r.t. ι.

Then using (R(e1, e2)ei)
⊥ = 0, γũ = h(∇∂/∂ũι, ν) and γṽ = h(∇∂/∂ṽι, ν),

we obtain (keγÃ2)ṽ = 0 and (ke
γB̃2)ũ = 0, which mean

keγÃ2 = φ2 and keγB̃2 = ψ2 for positive-valued functions φ = φ(ũ), ψ = ψ(ũ).

u, v: functions of one variable ũ, ṽ respectively s.t.
du

dũ
= φ,

dv

dṽ
= ψ.

=⇒ (u, v) are isothermal coordinates of M w.r.t. g and

w = u +
√
−1v is a local complex coordinate of M .



Aι: the shape operator of F w.r.t. ι.

Then we can suppose

Aι

µ
∂

∂u

¶
= k · dF

µ
∂

∂u

¶
, Aι

µ
∂

∂v

¶
= −k · dF

µ
∂

∂v

¶
.

ŵ = û +
√
−1v̂: a local complex coordinate of M given by

ŵ = exp(
√
−1π/8)w = e

√
−1θw

³
θ =

π

8

´
.

cos
π

8
=

p
2−
√
2

2
(
√
2 + 1),

sin
π

8
=

p
2−
√
2

2
.

 

 

 



Since
∂

∂u
=

p
2−
√
2

2

µ
(
√
2 + 1)

∂

∂û
+

∂

∂v̂

¶
,

∂

∂v
=

p
2−
√
2

2

µ
− ∂

∂û
+ (
√
2 + 1)

∂

∂v̂

¶
,

we obtain

(−4− 2
√
2)Aι

µ
∂

∂û

¶
= −2(

√
2 + 1)k

µ
∂

∂û
+

∂

∂v̂

¶
,

which means σ(T̂1, T̂1) = σ(T̂1, T̂2) and therefore F is strictly isotropic,

by rechoosing the orientation of N if necessary. ¤



Remark

F :M −→ N : a space-like and conformal immersion with zero mean

curvature vector s.t. R̂(e1, e2)ΘF,± = 0, dω⊥ = 0.
Then we see by the above theorem that F is isotropic if and only if

F is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark

Let N be a 4-dimensional Lorentzian space form. Then R̂(e1, e2)ΘF,± = 0.
In addition, by Q ≡ 0, we obtain dω⊥ = 0.
In the next section, we will prove that if F is strictly isotropic, then Q ≡ 0.



M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion,

(e3, e4): a local ordered pseudo-orthonormal frame field of TM giving

the orientation of M .

Suppose that e4 is time-like.

(ω3,ω4): the dual frame field of (e3, e4),

∗: a linear transformation of T ∗aM defined by ∗ω3 = ω4, ∗ω4 = ω3.



Theorem

F :M −→ N : a time-like and conformal immersion with zero mean

curvature vector s.t. R̂(e3, e4)ΘF,+ = 0.

Then the following hold :

(a) Q is holomorphic;

(b) the 2nd fundamental form of F is constructed by solutions of

two families of systems of ordinary differential equations defined along

integral curves of light-like vector fields e3 ± e4 and given by
the connection forms ω := h(∇e3, e4), ω⊥ := h(∇e1, e2);

(c) if F is strictly isotropic and if F is not totally geodesic on any open set

of M , then ω, ω⊥ satisfy d ∗ ω = 0 and dω⊥ = 0 for a suitable (e3, e4),
and the second fundamental form of F is constructed by a solution of

an over-determined system such that the compatibility condition is

given by d ∗ ω = 0 and dω⊥ = 0.



5. Surfaces with zero mean curvature vector in 4-dimensional

Lorentzian space forms

N : a 4-dimensional Lorentzian space form,

L0: the constant sectional curvature of N .

• L0 = 0 =⇒ N = E41 = (R
4, h , i3,1),

hx, yi3,1 = x1y1 + x2y2 + x3y3 − x4y4

(x = (x1, x2, x3, x4), y = (y1, y2, y3, y4)).

• L0 > 0 =⇒ N = S41(L0) =

½
x ∈ E51

¯̄̄̄
hx, xi4,1 =

1

L0

¾
.

• L0 < 0 =⇒ N = H41(L0) =

½
x ∈ E52

¯̄̄̄
hx, xi3,2 =

1

L0

¾
.



M : a Riemann surface,

F :M −→ N : a space-like and conformal immersion with zero mean

curvature vector.

Suppose that F is strictly isotropic.

w = u +
√
−1v: a local complex coordinate of M s.t.

KF,+σ(T1, T1) = σ(T1, T2)

for T1 := dF

µ
∂

∂u

¶
, T2 := dF

µ
∂

∂v

¶
.

g: the induced metric by F .

We represent g as g = e2αdwdw.



N1, N2: normal vector fields of F s.t.

h(N1, N1) = e
2α, h(N2, N2) = −e2α, h(N1, N2) = 0.

=⇒ ∃μ1, μ2, β1, β2 s.t.
[DT1F DT1T1 DT1T2 DT1N1 DT1N2] = [F T1 T2 N1 N2]S,

[DT2F DT2T1 DT2T2 DT2N1 DT2N2] = [F T1 T2 N1 N2]T ,

where

S :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 −L0e2α 0 0 0

1 αu αv −μ1 μ2
0 −αv αu −μ2 μ1
0 μ1 μ2 αu β1

0 μ2 μ1 β1 αu

⎤⎥⎥⎥⎥⎥⎥⎦, T :=
⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −L0e2α 0 0

0 αv −αu −μ2 μ1

1 αu αv μ1 −μ2
0 μ2 −μ1 αv β2

0 μ1 −μ2 β2 αv

⎤⎥⎥⎥⎥⎥⎥⎦.



Since Sv − Tu = ST − TS, we obtain

• αuu + αvv = −L0e2α (the equation of Gauss),

• (eαμp)u = −eαμqβ1, (eαμp)v = −eαμqβ2 for {p, q} = {1, 2}
(the equations of Codazzi),

• (β1)v − (β2)u = 2(μ21 − μ22) (the equation of Ricci).

Noticing (eαμp)uv = (e
αμp)vu, we obtain μ2 = ±μ1 and (β1)v = (β2)u.

From μ2 = ±μ1, we obtain Q ≡ 0.
From (β1)v = (β2)u, we can find a function φ s.t. φu = β1, φv = β2.

Then by the equations of Codazzi, we can find a constant C s.t. μ1 = Ce
−α∓φ.



Theorem (A, 2020)

N : a 4-dimensional Lorentzian space form,

L0: the constant sectional curvature of N ,

M : a Riemann surface.

(a) For a Hermitian metric g = e2αdwdw on M with constant curvature L0

and a function φ on M ,

∃F : a space-like and conformal immersion of a neighborhood of
each point of M into N with zero mean curvature vector satisfying

• Q ≡ 0;
• F is strictly isotropic, by rechoosing the orientation of N
if necessary.

Such an immersion is uniquely determined up to an isometry of N .

(b) F :M −→ N : a space-like and conformal immersion with zero mean

curvature vector.

If F is strictly isotropic, then Q ≡ 0.



Remark

N : as in the above theorem,

F :M −→ N : a space-like and conformal immersion with zero mean curvature

vector.

=⇒ • R̂(e1, e2)ΩF,± = 0,
• Q ≡ 0 means dω⊥ = 0.

Therefore F satisfies Q ≡ 0 if and only if
F is strictly isotropic, by rechoosing the orientation of N if necessary.

This means that the following are mutually equivalent:

• F is isotropic;
• F is strictly isotropic, by rechoosing the orientation of N if necessary;

• Q ≡ 0.



Example

M : a Riemann surface,

ι :M −→ E3: a minimal conformal immersion of M into E3.

=⇒ ι is Willmore and Q̃ ≡ 0.
L+ := {x = (x1, x2, x3, x4, x5) ∈ E51 | hx, xi4,1 = 0, x5 > 0}.
We consider E3 to be a subset L+ ∩ {x5 = x1 + 1} of L+ and therefore
we consider ι to be an L+-valued function.

γ: the conformal Gauss map of ι,

Reg (ι): the set of non-umbilical points of ι.

=⇒ • γ|Reg (ι) has zero mean curvature vector,
• the holomorphic quartic differential Q on Reg (ι) defined by
F = γ|Reg (ι) vanishes.



w = u +
√
−1v: a local complex coordinate of Reg (ι).

We can suppose

• ∂/∂u, ∂/∂v are in the principal directions of ι,
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where ε :=
√
−K and K is the Gaussian curvature of ι.

Therefore ι is a light-like normal vector field of γ|Reg (ι) in S41 = S41(1).
Aι: the shape operator of γ|Reg (ι) w.r.t. ι.
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Therefore by ŵ = exp(
√
−1π/8)w, we see that F = γ|Reg (ι) is strictly

isotropic, by rechoosing the orientation of S41 if necessary.



Remark

ι :M −→ S3: a conformal and Willmore immersion,

γ :M −→ S41: the conformal Gauss map of ι.

=⇒ • ι is a light-like normal vector field of γ|Reg (ι),
• γ|Reg (ι) has zero mean curvature vector.

Suppose that the holomorphic quartic differential Q on Reg (ι) defined by

γ|Reg (ι) vanishes.
=⇒ A light-like normal vector field ν of γ|Reg (ι) s.t. hι, νi4,1 = −1 is

contained in a constant direction in E51

x0: a point of S
3 determined by ν

=⇒ The image of ι(M ) \ {x0} by the stereographic projection
pr : S3 \ {x0} −→ E3 from x0 is a minimal surface in E

3.



Bryant showed that a Willmore sphere in S3 gives a complete minimal surface

in E3 with finite total curvature s.t. all the ends are embedded and planar.

Based on this result, Kusner constructed complete minimal surfaces Σ2k+1
(k ∈ N) in E3 given by punctured real projective planes s.t. each Σ2k+1 has
2k + 1 planar ends, and inverting them, he gave examples of Willmore

projective planes

Referring to these minimal surfaces, Hamada-Kato constructed complete

minimal surfaces Σ2k+2 (k ∈ N) in E3 given by punctured real projective
planes s.t. each Σ2k+2 has 2k + 1 catenoidal ends and one planar end.



M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion with zero mean

curvature vector.

Suppose that F is strictly isotropic.

w = u + jv: a local paracomplex coordinate of M s.t.

KF,+σ(T1, T1) = σ(T1, T2)

for T1 := dF
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g: the induced metric by F .

We represent g as g = e2αdwdw.



N1, N2: normal vector fields of F s.t. h(Np,Nq) = δpqe
2α.

=⇒ ∃μ1, μ2, β1, β2 s.t.
[DT1F DT1T1 DT1T2 DT1N1 DT1N2] = [F T1 T2 N1 N2]S,

[DT2F DT2T1 DT2T2 DT2N1 DT2N2] = [F T1 T2 N1 N2]T ,

where

S :=

⎡⎢⎢⎢⎢⎢⎢⎣
0 −L0e2α 0 0 0

1 αu αv −μ1 −μ2
0 αv αu −μ2 μ1

0 μ1 −μ2 αu −β1
0 μ2 μ1 β1 αu

⎤⎥⎥⎥⎥⎥⎥⎦, T :=
⎡⎢⎢⎢⎢⎢⎢⎣
0 0 L0e

2α 0 0

0 αv αu μ2 −μ1
1 αu αv μ1 μ2

0 −μ2 μ1 αv −β2
0 μ1 μ2 β2 αv

⎤⎥⎥⎥⎥⎥⎥⎦.



Since Sv − Tu = ST − TS, we obtain
• αuu − αvv = −L0e2α (the equation of Gauss),

• (eαμp)u = (−1)p+1eαμqβ1, (eαμp)v = (−1)p+1eαμqβ2 for {p, q} = {1, 2}
(the equations of Codazzi),

• (β1)v − (β2)u = 2(μ21 + μ22) (the equation of Ricci).

Noticing (eαμp)uv = (e
αμp)vu, we obtain μ1 = μ2 = 0 and (β1)v = (β2)u.

Theorem (A, 2020)

N : a 4-dimensional Lorentzian space form,

M : a Lorentz surface,

F :M −→ N : a time-like and conformal immersion with zero mean

curvature vector.

If F is isotropic, then F is totally geodesic.
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