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1. Mixed-type structures of 4-dimensional Lorentzian vector

spaces

X: an oriented 4-dimensional vector space,
hx: asymmetric and indefinite bilinear form of X with signature (3,1),
(e1,€9,e3,¢e4): an ordered basis of X giving the orientation of X s.t.
hx(ei,ej) =0 (i # j),
hx(ee) =1 (1=1,2,3), hx(egeq) =—1.
B x: the set of ordered bases of X as (e, €9, €3, e4).



9@] = ¢e; N ej,
hx: a bilinear form of /\ X defined by
hix (05, 0k1) = hx(ei, ex)hx(ej, e1) — hx(es, e))hx(ej, ep).
1 1 1
— (019 £ 6034), OL 9 :=—(013 £ 04), Ox3:=—(014 % 023).
\/5( 12 £ 034), O4 9 \/5( 13E£042), O43 \/5( 14 £ 093)

These are light-like and we have
iLX(@e,iv@g’,j> =0 <€75/ S {—l_a _}7 1 é 1<) é 3)7
hx(©1:;,0_4) =1 (=12), hx(©436-3)=-1

O41:=

We see that Ay is a symmetric and indefinite bilinear form of /\2X with
signature (3,3).



Remark
o If hy is positive-definite,
then noticing a double covering SO(4) — SO(3) x SO(3),
we have a decomposition A\°X = /\iX DN X,
where /\in A% X are subspaces of A°X with dim /\2iX =3 s.t.

NX=(Ei1,E,0,E3), N X=(E_1,E_5 E_3)

e If hx has signature (2,2),
then noticing a double covering SOg(2,2) — SOp(1,2) x SOy(1,2),
we have \2X = /\iX DN X,
where /\iX, A2 X are subspaces of A°X with dim /\QiX =3 s.t.

/\iX — <E_717 E+727 E+73>’ /\2—X — <E‘|‘717 E_727 E_73>



K: a linear transtformation of X.
We call K a mized-type structure of X
if K has invariant subspaces X+ of X with dim X4 =2 s.t.

e X are eigenspaces of K2 so that F1 are the corresponding eigenvalues,
respectively,

e K|x is not the identity map.

K: a mixed-type structure ot X.
We say that K is compatible with hyx it K satisfies

e cach nonzero element of X is space-like,
o (K|x,)"hx =xhy,

e X are perpendicular to each other.



K': a mixed-type structure of X compatible with h x .
We say that K is compatible with the orientation of X
if (e, K(eq),es, K(e3)) € Bx for any unit vector e; € X4 and any space-like

and unit vector ez € X_.

K. a mixed-type structure of X compatible with h x and the orientation of X.

We see that

\%(el ANK(e1) +e3 A K (e3)) (81)

is light-like and determined by K, and does not depend on the choice of a pair
(e1,e3).



K_: a mixed-type structure of X s.t.
e K _ is compatible with h y,

e K _ is not compatible with the orientation of X.

We see that

%(61 A\ K_(el) + ez A K_(63>) (ﬂ2>

is light-like and determined by K _, and does not depend on the choice of
(e1,€3).



Example

(e1,€2,€3,€4) € By,
K : a linear transformation of X defined by

(Ki(e1) Kilea) Ki(e3) Kiley)) = (e1 €2 3 ey)
— (K3(e1) K3(e2) KR (eg) K3 (ex) = (er ez eg ) |
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X1 = (ey,e9), X_:=(e3,e4).

—> K is a mixed-type structure, that is, K satisfies the above conditions:

o Ki(Xy)=X4, Ki(X)=X_,

e X are the Fl-eigenspaces of K_2H

o Ki|x #ldx_.

In addition, K is compatible with A x:

o (Kilx, )"hx =hx (hx(K+(e;), Ki(ej)) = hx(e;ej) fori,j =1,2),

o (Ki|[x_)*hx = —hx by
hx(Ky(e3), Ky(e3)) = hx(es, ea) = —hx(es, e3),
hx(K(eq), Ki(eq)) = hx(es, e3) = —hx(eq, eq),
hx(Ky(e3), Ky(es)) = hx(es, e3) = —hx(es, e),

o X | X_.

Since (e1, K1+(e1),e3, K+(e3)) = (e1, e9,e3,e4) € By, Ky is compatible with

the orientation of X.



K_: a linear transformation of X defined by

10 0 |

0
(K_(e1) K_(e2) K_(e3) K_(eq4)) = (e1 €2 €3 e4) (1) 8 8 _01
_O 0 —1 0 ]

—> K _ is a mixed-type structure of X s.t.
e K _ is compatible with hx,

e K _ is not compatible with the orientation of X.



X': an oriented 2-dimensional subspace of X s.t. each nonzero element of X'
is space-like.
—> dK: a mixed-type structure of X compatible with hy and
the orientation of X s.t.
o X'=X,
e for a nonzero vector e; € X,

(e1, Ky (e1)) gives the orientation of X' = X .

JK_: a mixed-type structure of X compatible with Ay and
not compatible with the orientation of X s.t.
o X' =X,
e for a nonzero vector e; € X,
(e1, K_(ej)) gives the orientation of X’ = X .



X" an oriented 2-dimensional subspace of X which has a time-like vector of X.
—> dK: a mixed-type structure of X compatible with hy and
the orientation of X s.t.
o X"=X_|
e for a space-like vector e3 € X_.
(e3, Kt (e3)) gives the orientation of X" = X _.

3K _: a mixed-type structure of X compatible with Ay and
not compatible with the orientation of X s.t.
o X"=X_|
e for a space-like vector e3 € X_.
(e3, —K_(e3)) gives the orientation of X" = X_.



2. Space-like surfaces in Lorentzian 4-manifolds

M': a manifold,

E: an oriented vector bundle over M of rank 4.
h: an indefinite metric of E with signature (3, 1),
V: a connection of E' s.t. Vh = 0.

h: the metric of A*E induced by h.

— h has signature (3, 3).

V: the connection of A’E induced by V.

— Vh=0.



E’: an oriented subbundle of E of rank 2 s.t. each nonzero element of each fiber
of E' is space-like.

Then E' defines mized-type structures K4 of E, i.e., sections of End (E)

which give mixed-type structures of the fiber E, of E defined by the fiber E/,

of E' for cach a € M.

Mixed-type structures K+ of E defined by E’ give light-like sections ©+ of
AE by (§1) and (42).



M: a Riemann surface,

N: an oriented 4-dimensional Lorentzian manifold,

F: M — N: a space-like and conformal immersion.

E = F*TN.

We see that F gives a subbundle B’ of E by E' = F*(dF(TM)).

Kp 4 the mixed-type structures of £ given by E’
We call each of light-like sections O p 4 of /\2E given by Kp 1 a lift of F.



w = u + v/ —1v: a local complex coordinate of M,

0 0
T dF(au), = d (av)

Suppose that F' has zero mean curvature vector.
— leTl + VTQTQ = 0.

e We say that F' is isotropic

if we can choose w s.t.

WMo (T, Th),0(Th, T1)) = —h(o(T1,Th),0(T1, T2)),
h(o(T1,T1),0(11,12)) = 0.

e We say that F' is strictly isotropic
if we can choose w st. Kp o(T1,T1) = o(11,Th).

Remark If F' is strictly isotropic, then F' is isotropic.



U= dF(0/0w).

_ o 0
— Va/aw<\lfdw> = O'(aw, 021)) dw.

We can define a complex quartic differential () on M by

o 0 0 0
Q.h(a(ﬁw,aw), 0(811}’821})) dw ® dw ® dw ® dw.

If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that () is holomorphic.



Theorem

N: an oriented 4-dimensional Lorentzian manifold,

M: a Riemann surface,

F: M — N: a space-like and conformal immersion with zero mean

curvature vector.

Then F' 1s 1sotropic if and only if one the following holds:
(a) @ =0;

(b) F' is strictly isotropic, by rechoosing the orientation of N if necessary.



Proof

V1, V9. normal vector fields of F' s.t.
h(vi,v1) =1, h(n,n)=—1, h(v,n) =0.
We represent o (T}, 1) as o(T},17) = ClldVl + cilyg.
Suppose that F' is isotropic.
Then we obtain ((c};)? — (c)?)((ci9)? — (c£1)?) = 0.
o If (0%1)2 = (C%1>2, then we have (C%l, 6%2) = :I:(c%17 012) ie., @ =0.
o If (C%2>2 = (C%1>2, then we have (C%l, 0%2) = j:(cb, ch) and then

F' is strictly isotropic, by rechoosing the orientation ot IV if necessary.

If either () = 0 or F' is strictly isotropic, then F' is isotropic.



Theorem N, M. F: as in the previous theorem.

Then the following are mutually equivalent:
(a) @ =0;
<b> h<ka@F + ka@F —|-) 0,

h(ka@F—a VTk@F ) =

h<ka@F,+7 VTk@F,—) = O for k=1,2;

(c) the second fundamental form is light-like or zero.

Remark

Suppose that F'is strictly isotropic.

Then we obtain ﬁ<@Tk@F,—i—7 @Tk@pj_) =0,
while we do not necessarily obtain (VO ., V1, Op.) =0 for e € {+,—}.



Remark
N: an oriented 4-dimensional Riemannian or neutral manifold,

F: M — N: a space-like and conformal immersion with zero mean curvature
vector.

Then by the bundle decomposition A\*E = /\iE ® N2 E with E = F*TN,

we have iL(@Tk@F#, @Tk@p’_) = 0.

We see that F is strictly isotropic it and only it a suitable one of O 4 is

horizontal.



Remark

N: an oriented 4-dimensional neutral manifold,

M a Lorentz surface,

F: M — N: atime-like and conformal immersion with zero mean curvature
vector.

Then we have analogues of results mentioned in the previous remark.

In addition, if F"is isotropic and if none of the covariant derivatives of O p 4

become zero,

then the covariant derivatives are light-like and the second fundamental form of

F' is light-like or zero.



3. Time-like surfaces in Lorentzian 4-manifolds

M a Lorentz surtace,

N: an oriented 4-dimensional Lorentzian manifold,

F: M — N: a time-like and conformal immersion,

E = F*TN.

We see that F gives a subbundle E” of E by E" = F*(dF(TM)).
E’: the subbundle of E given by the orthogonal complement of E”,

Kp 4 the mixed-type structure of F given by E’
We call each of light-like sections O p 1 of /\2E given by Kp 4 a lift ot F.



w = u + jv: a local paracomplex coordinate of M,

0 0

Suppose that F' has zero mean curvature vector.
—> VT1T1 = VTQTQ-

e We say that F' is isotropic

if we can choose w s.t.

ho (T, Th),0(Th,T1)) = k(o (Th, T2), o (11, T»)),
ho(Th,T1),0(T1,T5)) = 0.

e We say that F' is strictly isotropic
if we can choose w s.t. Kp o(T1,T1) = o(Th,T5).

Remark If F' is strictly isotropic, then F' is isotropic.



o\ 1
U= dF (=) = =(T} + jT»).
iF () =301+ T
_ o 0
— Vy/ou(Vdw) = O(@w’ 8w) dw.

We can define a complex quartic differential () on M by

0o 0 0o 0
Q'_h(g(aw’(f?u)’ U(@w’@w)) dw ® dw ® dw ® dw.

We see that () = 0 if and only it F' is totally geodesic.

If N is a 4-dimensional Lorentzian space form,

then we see by the equations of Codazzi that () is holomorphic.



Theorem

N: an oriented 4-dimensional Lorentzian manifold,

M: a Lorentz surface,

F: M — N: a time-like and conformal immersion with zero mean
curvature vector.

Then F' 1s isotropic if and only if F' 1s strictly isotropic, by rechoosing

the orientation of N if necessary.

Remark

Suppose that F'is strictly isotropic.

Then we obtain E(@Tk@Fﬂra @Tk@pj_) =0,

WhAileAwe do notA necessarily obtain h(Vp, O, V3 Op,) = 0for e € {+, —}.
If h(ka@F,ga ka@F,S/) =0fork=1,2and e, e’ € {+, -},

then we have o(17,Th) = +o(T7,17).



4. The images of the lifts by the curvature tensor

R: the curvature tensor of V:
R(X,)Y)Z =VxVyZ —-VyVxZ — V[ij]Z,
R: the curvature tensor of V.
= R(X1,X9)(Y1 A Ys) = (R(X1, X2)Y1) A Y2+ Y1 A R(X7, Xo)Yo.

M: a Riemann surface,
F: M — N: a space-like and conformal immersion,

(e1,€e2): a local ordered orthonormal frame field of TM giving the orientation

of M.



Theorem (A, 2020)

F: M — N: a space-like and conformal immersion with zero mean
curvature vector s.t. ]%(61, e2)OF 4 = 0.
Then the following hold:
(a) @ is holomorphic;
(b) if @ =0 and if dw = 0 with w' = h(Ves, e4),
then F' 1is strictly isotropic, by rechoosing the orientation of N

if necessary:

(c) if F' is strictly isotropic and if F is not totally geodesic on any open set
of M, then the connection forms w := h(Vey,ey) and wt satisfy
d*w =0 and dw™ = 0 for a suitable (e1, e3), and
the 2nd fundamental form of F' is constructed by a solution of

an over-determined system s.t. the compatibility condition is given by
d*w =0 and dwt = 0.



Proof of (b) of the theorem
Suppose () = 0.
—> The shape operator of a light-like normal vector field v of F' vanishes.

U: a neighborhood of a point of M where the 2nd fundamental form does
not vanish,
(@,v): local coordinates on U s.t. 0/0u, /00 are in principal directions of F
w.r.t. a light-like normal vector field ¢ satisfying h(¢,v) = —1.
The induced metric g on M by F is represented as ¢ = A%da? + B2do?.

Since R(el, e2)OF 4 = 0, we have (R(eq, er)e;) =0 (i=1,2).

Since dwt = 0, we can find a function ~ defined on a neighborhood of each
point of M s.t. wt = —dn.
In addition, we obtain v; = h(Va/(gf&L, v) and 5 = (Va/(%a, V).



k: a positive-valued tunction on U s.t. k£ and —k are principal curvatures ot F'
w.r.t. ¢.

Then using (R(eq, e2)e;) ™ = 0, v5 = (Vo aat:v) and v5 = (Vg g5t 1),

we obtain (keYA?); = 0 and (ke?B?); = 0, which mean

keVA? = ¢* and keVB? = ¢ for positive-valued functions ¢ = ¢(@), ¢ = (@),
du dv

u, v: functions of one variable u, v respectively s.t. prie = @, pei = 1.

—> (u,v) are isothermal coordinates of M w.r.t. g and

w=u++—1v is a local complex coordinate of M.



A,: the shape operator of F' w.r.t. ¢.

Then we can suppose

(3)war(E) a()-r ()

w = U+ +/—1v: a local complex coordinate of M given by

W = exp(v/—1m/8)w = eV~ (6’ = z).

8
2 — 2
cos — = v \/_(\/§+1>, :
5 2 V2
LT \/2—\/5 :
sin — = .

8 2




Since

a%: \/Q;ﬂ ((\/_+1)8u a@)’
%:\/Q;ﬂ( (f+1)(%>

we obtain

(—4 —2v/2)A (au)__2<\/§“)k<aaa+§>)’

which means J(T T 1) = J(T T 5) and therefore F' is strictly isotropic,

by rechoosing the orientation of IV if necessary.



Remark

F: M — N: a space-like and conformal immersion with zero mean
curvature vector s.t. R(el, e2)OF + = 0, dwt = 0.

Then we see by the above theorem that F' is isotropic if and only if

F' is strictly isotropic, by rechoosing the orientation of N if necessary.

Remark
Let N be a 4-dimensional Lorentzian space form. Then }?(61, e2)OF + = 0.
In addition, by Q = 0, we obtain dw+ = 0.

In the next section, we will prove that it F'is strictly isotropic, then ) = 0.



M a Lorentz surtace,

F: M — N: a time-like and conformal immersion,

(e3,e4): a local ordered pseudo-orthonormal frame field of TM giving
the orientation of M .

Suppose that ey is time-like.

(w3, w?): the dual frame field of (e, e4),

. a linear transformation of T;M defined by *xws = wy, *wy = ws.



Theorem

F: M — N: a time-like and conformal immersion with zero mean

curvature vector s.1. R(eg, 64)@F7_|_ = 0.
Then the following hold:

(a) @ is holomorphic;
(b) the 2nd fundamental form of F' is constructed by solutions of

two families of systems of ordinary differential equations defined along
integral curves of light-like vector fields es £+ e4 and given by
the connection forms w = h(Ves, ey), wr = h(Veq, €3);

(c) of F' s strictly isotropic and if F is not totally geodesic on any open set
of M, then w, w satisfy d * w = 0 and dw™ = 0 for a suitable (es,e4),
and the second fundamental form of F' is constructed by a solution of

an over-determined system such that the compatibility condition is
given by d*w =0 and dwt = 0.



5. Surfaces with zero mean curvature vector in 4-dimensional

Lorentzian space forms

N: a 4-dimensional Lorentzian space form,

Lq: the constant sectional curvature of V.

e Lj=0 = N=FEj=R4(, )31),
4 4

(z,y)31 = 2ly! + 2%y° + 27y° — 2ty

(x = (xl,x2,x3,a¢4), Yy = (yl,y27y37y4))-

1
<£E, x>4,1 — L_O}

1
<CU7 Qj>3,2 — L_O}

o [j>0 = N—Sf(LO)—{er%

e [j<0 = N:Hf(Lo)z{erg




M: a Riemann surface,

F: M — N: a space-like and conformal immersion with zero mean
curvature vector.

Suppose that F'is strictly isotropic.

w = u + +/—1v: a local complex coordinate of M s.t.

Kpo(T1,T1) = o(T1, 1)

0 0

g: the induced metric by F.

We represent g as ¢ = e2*dwdw.



N1, No: normal vector fields of F' s.t.

—> Jui, p2, B, B2 st
Dy, F Dy Ty DT> Dy Ny D, No| = [F 11 Ty N1 No)S,
Dy, F' DTy D1, Ty Dp,N1 Dp,No| = [F 11 T5 N1 No|T,

where

h(Ny, Np) = e’?,

h(Ny, Np) = —e?®,

Loe’® 0 0 0
Oty Ay —H1 K2
—Qy Oy —H2
w2y B
po  p1 Pr1ooy

h(N1, Ng) = 0.

00 —Lge*® 0 0
0oy —ay —p2
Loy, ay  p1 —p2
0 pg —p1 B2
0 —pe P2 oy




Since Sy — Ty, = ST — TS, we obtain

o iy + Qpy = —Lpe® (the equation of Gauss),

o (e%up)y = —€“ugBr, (eup)y = —eugBe for {p,q} = {1,2}
(the equations of Codazzi),

¢ (B1)y — (B2)y = 2(@% — ,u%) (the equation of Ricci).

Noticing (e*p)uv = (e*ip)vu, We obtain uo = £y and (81)y = (Bo)u.
From po = 41, we obtain Q = 0.

From (61)y = (82)y, We can find a function ¢ s.t. ¢y = B1, ¢y = Fo.
Then by the equations of Codazzi, we can find a constant C' s.t. yu; = Ce=F9,



Theorem (A, 2020)
N: a 4-dimensional Lorentzian space form.,
Lq: the constant sectional curvature of N,
M: a Riemann surface.
(a) For a Hermitian metric g = e’*dwdw on M with constant curvature Ly
and a function ¢ on M,
JF: a space-like and conformal immersion of a neighborhood of
each point of M into N with zero mean curvature vector satisfying
e () =0;
o F' 1s strictly isotropic, by rechoosing the orientation of N
of necessary.
Such an immersion 1s uniquely determined up to an isometry of N.
(b) F': M — N: a space-like and conformal immersion with zero mean

curvature vector.
If F' 1s strictly isotropic, then ) = 0.



Remark
N: as in the above theorem,
F: M — N: a space-like and conformal immersion with zero mean curvature
vector.
= o R(ey,e0)Qp 4 =0,
e () = 0 means dwt = 0.

Therefore F' satisfies () = 0 if and only if

F' is strictly isotropic, by rechoosing the orientation of IV if necessary.

This means that the following are mutually equivalent:

e [ is isotropic;
e F' is strictly isotropic, by rechoosing the orientation of N if necessary:

o () =0.



Example
M: a Riemann surface,
- M — E3: a minimal conformal immersion of M into ES.

— 4 is Willmore and Q = 0.

Lt :={zx = (2} 2%, 23, 2%, 2°) € E% | (z,2)11 =0, x> > 0}.
We consider E3 to be a subset L1 N {z° = 2! + 1} of LT and therefore

we consider ¢ to be an LT-valued function.

~v: the conformal Gauss map of ¢,
Reg (¢): the set of non-umbilical points of ¢.
— o V‘Reg (1) has zero mean curvature vector,
e the holomorphic quartic differential () on Reg (¢) defined by
F' = 7|Reg (,) vanishes.



w = u + v/ —1v: alocal complex coordinate of Reg (¢).

We can suppose

e 0/0u, 0/0v are in the principal directions of ¢,

) dv(aﬁu> ) _m(a%)’ o (ai) - de@)

where € := v/ —K and K is the Gaussian curvature of ¢.
Therefore ¢ is a light-like normal vector field of ¥|geg (,) In St = Si(1).

A, the shape operator of V‘Reg (1) WIt ¢

- (Z)-(2) A(2)--24(2)

Therefore by w = exp(v/ —17/8)w, we see that £ = 7y|Re, (,) 18 strictly

isotropic, by rechoosing the orientation of Sf if necessary.



Remark

L M — S3: a conformal and Willmore immersion,
v M — Sf: the conformal Gauss map of ¢.

—> e ¢ is a light-like normal vector field of fy]Reg (1)

o V‘Reg 0 has zero mean curvature vector.

Suppose that the holomorphic quartic differential @ on Reg (¢) defined by
V|Reg (1) vanishes.

—> A light-like normal vector field v of V‘Reg () st (L, V)41 =—11s

contained in a constant direction in E%

zo: a point of S° determined by v
—> The image of ¢(M) \ {xg} by the stereographic projection
pr: S3\ {zg} — E? from z( is a minimal surface in E°.



Bryant showed that a Willmore sphere in S° gives a complete minimal surface

in E3 with finite total curvature s.t. all the ends are embedded and planar.

Based on this result, Kusner constructed complete minimal surfaces 9z
(k € N) in E3 given by punctured real projective planes s.t. each 29k11 has
2k + 1 planar ends, and inverting them, he gave examples of Willmore

projective planes

Referring to these minimal surfaces, Hamada-Kato constructed complete
minimal surfaces Y951 o (k € N) in E? given by punctured real projective
planes s.t. each 2op.9 has 2k + 1 catenoidal ends and one planar end.



M a Lorentz surtace,

F: M — N: a time-like and conformal immersion with zero mean
curvature vector.

Suppose that F'is strictly isotropic.

w = u + jv: a local paracomplex coordinate of M s.t.

Kpo(T1,T1) = o(T1, o)

for T7 = dF(%), T5 = dF((%)

g: the induced metric by F.

We represent g as ¢ = e2*dwdw.



N1, No: normal vector fields of F' s.t. h(Np, Ny) = pqem.

— 1, po, O1, B2 st
Dy, F Dy, Ty Dp,T5 Dy N1 D, No| = [F 11 Ty N1 NoJS,
Dy, F D, Ty D1, Ty Dp,N1 Dp,No| = [F T1 T5 Ny No|T,

where
0 —Lge2® 0 0 0 | 0 0 Lpe2® 0 0
I oy o —p —p2 0 ay oy po —p
S=10 ay ay —po p |, T=|1 oy ay p1 p
0w —pe oy —01 0 —po p1 ay =P
0w o b1 oo 0 pr pe B2 oay




Since Sy — Ty, = ST — TS, we obtain
o ayuy — Qpy = —Lpe?® (the equation of Gauss),

o (e“pp)u = (—1)F PHle e“rgP, (e“pp)o = (—1)F PHle e g for {p,q} ={1,2}
(the equations of Codazzi),

e (B1)y— (Bo)uy = Z(M% — ,u%) (the equation of Ricci).

Noticing <6aﬂp>uv = (eaﬂp>vua we obtain g1 = po = 0 and (81)y = (52)u.

Theorem (A, 2020)

N: a 4-dimenstonal Lorentzian space form.,

M: a Lorentz surface,

F: M — N: a time-like and conformal immersion with zero mean
curvature vector.

If F' 1is 1sotropic, then F' 1s totally geodesic.
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