解析学II·自習用問題

D は平面 ${f R}^2$ 内の有界領域で、その境界 $C=\partial D$ が C^1 級単純閉曲線であるものとする。 $f,\,g,\,h$ はいずれも \overline{D} 上の C^2 級関数とする。

$$e(f) := \frac{1}{2}(\operatorname{grad} f, \operatorname{grad} f), \qquad E(f) := \iint_D e(f) dx dy$$

とおく。t は実数とする。 φ は C 上の連続関数とする。

1 次の等式を示せ。

$$\operatorname{div}(g\operatorname{grad} f) = g\Delta f + (\operatorname{grad} g, \operatorname{grad} f)$$

2 次の等式を示せ。

$$\int_{C} g \frac{\partial f}{\partial n} ds = \iint_{D} \left\{ g \Delta f + (\operatorname{grad} g, \operatorname{grad} f) \right\} dx dy$$

3 次の等式を示せ。

$$\int_{C} \left(g \frac{\partial f}{\partial n} - f \frac{\partial g}{\partial n} \right) ds = \iint_{D} (g \Delta f - f \Delta g) dx dy$$

4 次の等式を示せ。

$$\frac{d}{dt}E(f+th)|_{t=0} = \iint_{\mathcal{D}} (\operatorname{grad}h, \operatorname{grad}f) dx dy$$

5 $C \perp h = 0$ のとき、次の等式を示せ。

$$\frac{d}{dt}E(f+th)|_{t=0} = -\iint_D h\Delta f dx dy$$

- 6 $C \perp f = \varphi$ を満たす f の内 E(f) を最小にするものは、 $D \perp \Delta f \equiv 0$ を満たすことを示せ。
- 7 次の等式を示せ。

$$\frac{d}{dt}E(f+tf)|_{t=0} = E(f)$$

- 8 $D \perp \Delta f \equiv 0$ かつ $C \perp f = 0$ のとき、 $D \perp f \equiv 0$ であることを示せ。
- 9 $D \perp \Delta f \equiv 0$ かつ $C \perp f = \varphi$ であるような f は、各 φ に対し (存在したとすれば) ただ一つであることを示せ。