Nilpotent Lie algebras obtained by quivers and Ricci solitons

Hiroshi Tamaru Osaka Metropolitan University / OCAMI

The 8th Workshop: Complex Geometry and Lie Groups 2025/March/13

Abstract

- In the study on homogeneous Ricci solitons, nilpotent Lie groups are important.
- Many studies that construct nilpotent Lie algebras, and examine the existence of left-invariant Ricci solitons.
- Starting from quivers Q, we construct nilpotent Lie algebras n_Q.
- Thm: If Q is finite and without cycles, then n_Q admits a Ricci soliton.

 Joint Work with Fumika Mizoguchi (arXiv:2405.11184) and some others.

Result

Nilmanifolds - (1/3)

Note

 nilmanifold (in this talk)
 := a simply-connected nilpotent Lie group with a left-invariant Riemannian metric

Def.

A Riem mfd (M, g) is **Ricci soliton** : $\Leftrightarrow \exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(M) : ric = cg + \mathcal{L}_X g.$

Note

A situation depends on the signature of *c*:

- c > 0: it is rigid (flat × homog Einstein);
- c = 0: it must be flat.

Thm (Böhm-Lafente 2023)

(M,g): homogeneous Ricci soliton with c < 0 $\Rightarrow (M,g)$ is a solvmanifold (simply-connected solvable Lie group with a left-inv Riem metric).

Result

Nilmanifolds - (2/3)

Note

We identify:

- (G,g): a simply-connected Lie group with left-invariant Riem metric;
- (𝔅, ⟨, ⟩) : its Lie algebra with positive definite inner product.

Def.

A Lie algebra \mathfrak{g} with $\mathfrak{g}^0 := \mathfrak{g}, \ \mathfrak{g}^k := [\mathfrak{g}, \mathfrak{g}^{k-1}]$ is

- *m*-step nilpotent if $\mathfrak{g}^m = 0$ and $\mathfrak{g}^{m-1} \neq 0$;
- solvable if [g, g] is nilpotent.

Ex.

The following are solvable and (*m*-step) nilpotent:

Result

Nilmanifolds - (3/3)

Thm. (Lauret 2011)

- (𝔅, ⟨, ⟩) (solvable) is Ricci soliton
 ⇒ (𝔅 := [𝔅, 𝔅], ⟨, ⟩|𝑘×𝔅) is Ricci soliton;
- $(\mathfrak{n}, \langle, \rangle)$ (nilpotent) is Ricci soliton $\Rightarrow \exists (\mathfrak{s}, \langle, \rangle')$ (solvable) : its derived is $(\mathfrak{n}, \langle, \rangle)$.

Ricci soliton

Note

• The above $(\mathfrak{s}, \langle, \rangle')$ (solvable extension) can be chosen to be Einstein.

Thm. (Lauret 2003)

 (n, \langle, \rangle) (nilpotent) is Ricci soliton iff

• $\exists c \in \mathbb{R}, \exists D \in \operatorname{Der}(\mathfrak{n}) : \operatorname{Ric} = c \cdot \operatorname{id} + D.$

derivation

 $D[\cdot,\cdot] = [D(\cdot),\cdot] + [\cdot,D(\cdot)]$

Summary

• Nilpotent Ricci soliton (n, \langle, \rangle) are important.

Examples - (1/5)

Ex. (Heisenberg)

The standard inner product on \mathfrak{h}^3 is Ricci soliton:

$$\mathfrak{h}^{3} := \left\{ \begin{pmatrix} 0 & * & * \\ 0 & 0 & * \\ 0 & 0 & 0 \end{pmatrix} \right\} \quad (3-\text{dim Heisenberg}).$$

Ex. 1: rep of Clifford algebra \rightarrow nilpotent (H-type)

Note

For two-step nilpotent (n, \langle, \rangle) ,

- $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$, where \mathfrak{z} center, $\mathfrak{v} := \mathfrak{z}^{\perp}$;
- [,] is controlled by $J : \mathfrak{z} \to \operatorname{End}(\mathfrak{v})$, where $\langle J_Z(X), Y \rangle = \langle Z, [X, Y] \rangle$.

Def. (Kaplan 1980)

 $(\mathfrak{n}, \langle, \rangle) : \text{two-step nilpotent is of } \mathbf{H}\text{-type if}$ $\bullet \forall Z \in \mathfrak{z}, \ J_Z^2 = -\langle Z, Z \rangle \cdot \text{id.}$

• $\mathfrak{n} := \operatorname{span}(E \cup V)$ is two-step nilpotent by [v, w] = e, when e is an edge from v to w.

Examples - (3/5)

Thm. (Lauret-Will 2011)

• A graph G = (V, E) is "positive" iff the obtained Lie algebra admits Ricci soliton.

Ex. 3: parabolic subalgebra \rightarrow nilpotent

Fact

For a real semisimple Lie algebra \mathfrak{g} ,

- choosing a subset Φ of simple roots in the restricted root system, one has a parabolic subalgebra q_Φ;
- \mathfrak{q}_{Φ} has the Langlands decomposition $\mathfrak{q}_{\Phi} = \mathfrak{m}_{\Phi} \oplus \mathfrak{a}_{\Phi} \oplus \mathfrak{n}_{\Phi}$ with \mathfrak{n}_{Φ} nilpotent.

Examples - (4/5)

- This is a (kind of) generalization of Iwasawa decomposition g = t⊕ α ⊕ n
 (q_Φ minimal parabolic ⇒ n_Φ = n);
- Typical example (for sl(n, ℝ)) is given by "block decomposition":

Thm. (T 2011)

• Every \mathfrak{n}_{Φ} admits Ricci soliton.

Note

- $\mathfrak{g} = \mathfrak{su}(1, n)$, $\mathfrak{sp}(1, n)$, $\mathfrak{f}_4^{-20} \Rightarrow \mathfrak{n}_{\Phi}$ is H-type;
- \mathfrak{n}_{Φ} can have arbitrary high nilpotency step;
- It was well-known that n (Iwasawa nilpotent) admits Ricci soliton.

Result

Examples - (5/5)

Summary

- (n, \langle, \rangle) nilpotent Ricci soliton are interesting;
- several examples from different viewpoints;
- far from complete understanding (complete classification is only for dim ≤ 7);
- not so many examples for higher-step case...

Result

Quivers - (1/3)

quiver (originally): a container for holding arrows

Result

Quivers - (2/3)

Def.

For a quiver Q, the **path algebra** is defined by

- Space: span(Path(Q)), where Path(Q) := {all paths in Q};
- Product: For $\alpha, \beta \in Path(Q)$, define

$$\alpha \cdot \beta := \begin{cases} \alpha \beta \ (\text{if } t(\alpha) = s(\beta)), \\ 0 \ (\text{others}). \end{cases}$$

Def.

For a quiver Q, define the Lie algebra \mathfrak{n}_Q by • $\mathfrak{n}_Q := \operatorname{span}(\operatorname{Path}(Q)), \ [\alpha, \beta] := \alpha \cdot \beta - \beta \cdot \alpha.$

Quivers - (3/3)

Def

A path α is a **cycle** if • $t(\alpha) = s(\alpha)$.

Prop.

For a finite quiver Q without cycles,

- $\exists m := \max \text{ of length of paths};$
- \mathfrak{n}_Q is an *m*-step nilpotent Lie algebra. ($\dim \mathfrak{M}_Q < \infty$)

Result

Result - (1/3)

Thm. (Mizoguchi-T.)

For a finite quiver Q without cycles,

n_Q always admits Ricci soliton.

Note

• This provides many examples of Ricci soliton nilmanifolds with arbitrary high nilpotency.

Idea of Proof

- Construct \langle,\rangle on \mathfrak{n}_Q which is Ricci soliton;
- By induction on the number of steps.

More...

We can construct \langle,\rangle satisfying

- (1) $\operatorname{Ric} = -\operatorname{id} + D$ (*D* derivation);
- (2) Path(Q) is orthogonal;
- (3) the norm of a path is invariant by Aut(Q).

Result

Result - (2/3)

Step 1 (
$$m = 1$$
)

Assume n_Q is 1-step nilpotent (abelian). Then

- Take \langle, \rangle such that Path(Q) is orthonormal;
- This satisfies (1)-(3);
- In fact, Ric = 0 = -id + id with id derivation.

Step 2 $(m \rightarrow m + 1)$: illustration

Assume the claim holds for *m*-step case; (m=2)

Recent Studies - (1/3)

Def

For a finite quiver Q without cycles, define

Path_{≥0}(Q) := V ∪ Path(Q)
 (a vertex is regarded as a path of length 0).

Prop.

One can construct a solvable Lie algebra \mathfrak{s}_Q by

- $\mathfrak{s}_Q := \operatorname{span}(\operatorname{Path}_{\geq 0}(Q));$
- For $\alpha \in \operatorname{Path}(Q)$, $[s(\alpha), \alpha] = [\alpha, t(\alpha)] = \alpha$.

Prop. (Mizoguchi)

- \mathfrak{s}_Q always admits Ricci soliton;
- Some of them are rigid (flat \times Einstein).

Recent Studies - (2/3)

Def

For a finite quiver Q (possibly with cycles), let

- APath(Q) := { $\alpha \in Path(Q) \mid \alpha \text{ no cycles}$ }.
- \mathfrak{n}_{AQ} can be defined similarly.

Result

Recent Studies - (3/3)

Note

It will be interesting to study (other) geometric structures on \mathfrak{n}_Q .

Announcement

Tomorrow there will be a talk by Mizoguchi about

- pseudo-Riemannian metrics on \mathfrak{n}_Q ;
- symplectic structures on \mathfrak{n}_Q .

Thank you very much!