OSAKA METROPOLITAN UNIVERSITY GRADUATE SCHOOL OF INFORMATICS

Proof of Concept: Optimization of Genetic Algorithm-Based Deep Learning Configuration for Small-Scale Applications

Quoc Duy Nam Nguyen, Tadashi Nakano, Thi Hong Tran Department of Core Informatics, Graduate School of Informatics, Osaka Metropolitan University, Osaka, Japan

Background

Ways to train a DL for application Design and Train Custom Network Build and train a neural network from scratch Use Pretrained Models

- - Pretrain Models like Alexnet, Resnet50, VGG19,... can be used for re-train with our datasets
 - Large, time and energy consuming
- Fine-Tuning:
 - Use pretrained models for new task, only train few layers while keeping frozen other layers.
 - Large, time and energy consuming

Idea

Current Problems

The training pretrained models or design new custom DL networks will encounter some problems

- DL require knowledge during designing stage => hard to access for non-technical people or non- IT people.
- Small-scale applications have constrained resources => Large network as pretrained models sometime are not suitable (IoT)
- Designing and training models from scratch is resourceintensive and not feasible for many users.

Current Problems

Dataset	Acc
EMNIST	
Balanced	≥ 89%
Byclass	≈86.6%
Bymerge	≈90%
Digits	≈100%
Letters	≥93%
MNIST	
MNIST	≈100%
FMNIST	
FMNIST	≥ 90%
Dataset	Para
EMNIST	
Balanced	≤ 150000
Byclass	≤ 150000
Bymerge	≤ 150000
Digits	≤ 50000
Letters	≤ 130000
MNIST	
MNIST	\leq 48000
FMNIST	
FMNIST	≤ 50000
FMNIST	≤ 50000