Publications

Original papers published in the past 10 years

A component of the septation initiation network complex, SepL, participates in the cellobiose-responsive expression of cellulolytic enzyme genes in Aspergillus aculeatus
Sawada K, Kikuya S, Shiga Y, Kawaguchi T, Tani S*.
Journal of Basic and Microbiology. 2024. In press

The combinational manipulation of transcription factors, CreA and ClbR, is a viable strategy to improve cellulolytic enzyme production in Aspergillus aculeatus
Tani S*, Hirose S, Kawaguchi T.
Journal of Biotechnology and Bioengineering. 2024 Nov;138(5):361-368. https://doi.org/10.1016/j.jbiosc.2024.07.011

Cycloheximide in the nanomolar range inhibits seed germination of Orobanche minor.
Nogami R, Nagata M, Imada R, Kai K, Kawaguchi T, Tani S.*
Journal of Pesticide Science. In press.

Independent, cooperative regulation of cellulolytic genes by paralogous transcription factors ClbR and ClbR2 in Aspergillus aculeatus.
Kunitake E, Kawaguchi T, Tani S.*
Bioscience, Biotechnology, and Biochemistry. In press.

C-terminus of serine-arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus.
Kobayashi N, Katayama R, Minamoto K, Kawaguchi T, Tani S.*
Int Microbiol. 2023 May 17. doi: 10.1007/s10123-023-00373-x. Online ahead of print.

A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus.
Kuga M, Shiroyanagi H, Kawaguchi T, Tani S*.
Appl Microbiol Biotechnol. 2023 Feb;107(2-3):785-795. doi: 10.1007/s00253-022-12337-8.

Improvement of cellulosic biomass-degrading enzyme production by reducing extracellular protease production in Aspergillus aculeatus.
Yoshimura Y, Kobayashi Y, Kawaguchi T, Tani S*. 
J Gen Appl Microbiol. 2022 Nov 10;68(3):143-150. doi: 10.2323/jgam.2021.10.005. Epub 2022 May 23.

Serine-arginine protein kinase-like protein, SrpkF, stimulates both cellobiose-responsive and D-xylose-responsive signaling pathways in Aspergillus aculeatus.
Katayama R, Kobayashi N, Kawaguchi T, Tani S*.
Curr Genet. 2022 Feb;68(1):143-152. doi: 10.1007/s00294-021-01207-x. Epub 2021 Aug 28.

Biogenic manganese oxides combined with 1-hydroxybenzotriazol and an Mn(II)-oxidizing enzyme from Pleosporales sp. Mn1 oxidize 3,4-dimethoxytoluene to yield 3,4-dimethoxybenzaldehyde.
Yoshimura Y,§ Tani S,§ Fujiwara M, Nakamura M, Sumitani J, Kawaguchi T*.
J Biosci Bioengineering. 2021 Jan 23. doi: 10.1016/j.jbiosc.2020.12.014. Online ahead of print.
§ These two authors contributed equally to this work. 

A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus.
Tsumura R, Sawada K, Kunitake E, Sumitani J, Kawaguchi T, Tani S*.
Appl Microbiol Biotechnol. 2021 Jan 22. doi: 10.1007/s00253-021-11110-7. Online ahead of print. 

Chemical genetic approach using β-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans.
Tani S*, Nishio N, Kai K, Hagiwara D, Ogata Y, Tojo M, Sumitani J, Judelson HS, Kawaguchi T.
Sci Rep. 2020 Dec 18;10(1):22326. doi: 10.1038/s41598-020-79326-7. 

Actinomycins inhibit the production of the siderophore pyoverdines in the plant pathogen Pseudomonas cichorii SPC9018.
Maenaka R, Tani S, Hikichi Y, Kai K*.
Biosci Biotechnol Biochem.
2020 Jun 28:1-11. 

A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis.
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K.*
J Nat Prod
. 2020 Jun 2. doi: 10.1021/acs.jnatprod.0c00054. 

Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression.
Hirasawa H, Shioya K, Furukawa T, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W.*
Appl Microbiol Biotechnol. 2018 Feb 7. doi: 10.1007/s00253-018-8763-5.

Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degrading enzyme genes in Aspergillus aculeatus.
Tani S,* Yuki S, Kunitake E, Sumitani J, Kawaguchi T.
Biosci. Biotechnol. Biochem., 2017 June;81(6):1227-1234.

Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.
Baba Y, Sumitani J*, Tani S, Kawaguchi T.
Appl. Microbiol. Biotechnol., 2016 Dec;100(24):10495-10507.

A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.
Nakazawa H, Kawai T, Ida N, Shida Y, Shioya K, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W.*
Enz. Microb. Technol., 2016 Jan;82:89-95.

Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases.
Treebupachatsakul T, Nakazawa H, Shinbo H, Fujikawa H, Nagaiwa A, Ochiai N, Kawaguchi T, Nikaido M, Totani K, Shioya K, Shida Y, Morikawa Y, Ogasawara W,* Okada H.
J. Biosci. Bioeng., 2016 Jan;121(1):27-35.

Utilization of recombinant Trichoderma reesei expressing Aspergillus aculeatusβ-glucosidase 1 (JN11) for a more economical production of ethanol from lignocellulosic biomass.
Treebupachatsakul T, Shioya K, Nakazawa H, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W,* Okada H.
J. Biosci. Bioeng., 2015 Dec;120(6):657-665.

Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785.
Kamon M, Sumitani J*, Tani S, Kawaguchi T.
Appl. Microbiol. Biotechnol. 2015 Jun;99(11):4743-4753.

Effects of clbR overexpression on enzyme production in Aspergillus aculeatus vary depending on the cellulosic biomass-degrading enzyme species.
Kunitake E, Kawamura A, Tani S,* Takenaka S, Ogasawara W, Sumitani J, Kawaguchi T.
Biosci. Biotechnol. Biochem. 2015 Mar;79(3):488-495.

Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system.
Baba Y, Sumitani J,* Tani S, Kawaguchi T.
AMB Express2015 Jan;5(1):3.

Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi.
Tani S,* Kawaguchi T, Kobayashi T.
Appl. Microbiol. Biotechnol. 2014 Jun;98(11):4829-4837.

Crystal structure of glycoside hydrolase family 3 beta-glucosidase 1 from Aspergillus aculeatus.
Suzuki K, Sumitani J, Nam YW, Nishimaki T, Tani S, Wakagi T, Kawaguchi T, Fushinobu S.*
Biochem. J. 2013 Jun;452(2):211-221.

A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus.
Kunitake E, Tani S,* Sumitani J, Kawaguchi T.
Appl. Microbiol. Biotechnol. 2013 Mar;97(5):2017-2028.

Reversible impairment of the ku80gene by a recyclable marker in Aspergillus aculeatus.
Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T.*
AMB Express 2013 Jan;3(1):4.

Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomasses through a comparison with commercially available counterparts.
Kawai, T., Nakazawa, H., Iba, N., Okada, H., Tani, S., Sumitani, J., Kawaguchi, T., Ogasaweara, W., Morikawa, Y., and Kobayashi, Y.*
J. Ind. Microbiol. Biotechnol., 39, 1741-1749 (2012).

Halophilic characterization of starch-binding domain from Kocuria varians α-amylase.
Yamaguchi, R., Inoue, Y., Tokunaga, H., Ishibashi, M., Arakawa, T., Sumitani, J., Kawaguchi, T., and Tokunaga, M.*
Int. J. Biol. Macromol. 2012 Jan;50(1):95-102.

XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus.
Tani, S., Kanamasa, S., Sumitani, J., Arai, M., and Kawaguchi, T.*
Curr. Genet. 2012 Apr;58(2):93-104.

Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion.
Nakazawa, H., Kawai, T., Ida, N., Shida, Y., Kobayashi, Y., Okada, H., Tani, S., Sumitani, J., Kawaguchi, T., Morikawa, Y., and Ogasawara, W.*
Biotechnol. Bioeng. 2012 Jan;109(1):92-99.