研究業績

2024

  • Kingo Ariyoshi and Yuma Nagashima, Modelling and analysis of polarisation characteristics in lithium insertion electrodes considering charge transfer and contact resistances, Chem. Commun., 60, 12888 (2024). https://doi.org/10.1039/d4cc04375h

  • Kingo Ariyoshi and Shumpei Masuda, Accelerating the reaction rates of nucleation growth and solid-state diffusion in electrochemical lithium insertion into MgMn2O4 by controlling the particle size, J. Solid State Electrochem., J. Solid State Electrochem., 28, 3447–3453 (2024). https://doi.org/10.1007/s10008-024-05933-3

  • Kingo Ariyoshi and Toshiyuki Tanaka, Single-Crystal Growth of LiNi1/3Co1/3Mn1/3O2 via the Flux Method and Its Electrochemical Properties, Crystal Growth & Design, 24, 3771-3776 (2024). https://doi.org/10.1021/acs.cgd.4c00101

  • Kingo Ariyoshi and Shinya Hiroshima, Chronoamperometric analyses of lithium insertion/extraction kinetics of lithium nickel manganese oxide using the diluted electrode method, Electrochim. Acta, 487, 144192 (2024). https://doi.org/10.1016/j.electacta.2024.144192

2023

  • Motoyuki Hirooka, Takefumi Okumura, and Kingo Ariyoshi, Effects of Lithium Over-Stoichiometry in Li1+xCoO2-δ and Li1+xCo0.95Ni0.05O2-δ on High-Voltage Float Durability and Cyclability, J. Electrochem. Soc., 170, 100506 (2023). http://doi.org/10.1149/1945-7111/acfd15

  • Kingo Ariyoshi, Kohei Nishimura, and Daichi Kitagawa, Quantum Chemical Analysis of the Correlation between Electrode Potential and Redox Center of Li-Insertion Materials: Olivine, Layered and Spinel Structures, and Aqua-Complexes, ChemElectroChem, 10, e202300333 (2023). http://dx.doi.org/10.1002/celc.202300333 

  • Muhammad Mominur Rahman, Kangxuan Xia, Xiao-Qing Yang, Kingo Ariyoshi, and Enyuan Hu, Asymmetric Lithium Extraction and Insertion in High Voltage Spinel at Fast Rate, Nano Lett., 23, 7135–7142 (2023). https://doi.org/10.1021/acs.nanolett.3c02042

  • Kingo Ariyoshi and Kazuki Matsumoto, Effect of Cations on the Electrochemical Properties of Insertion Reactions Using Prussian Blue Analogues, J. Phys. Chem. C, 127, 15114 (2023). https://doi.org/10.1021/acs.jpcc.3c03838

  • Kingo Ariyoshi and Naoto Ohji, Synthesis and Characterization of W-Nb Oxides (WO3-Nb2O5) for Large-Volumetric-Capacity Negative Electrodes, ACS Appl. Energy Mater., 6, 7497 (2023). https://doi.org/10.1021/acsaem.3c00879

  • Taichi Nakamura and Kingo Ariyoshi, Crosstalk Reactions Induce Positive- and Negative-Electrode Resistance Increments in Li[Li1/3Ti5/3]O4/LiNi1/2Mn3/2O4 Cells, J. Electrochem. Soc., 170, 030549 (2023). https://doi.org/10.1149/1945-7111/acc695

  • Taichi Nakamura and Kingo Ariyoshi, Elucidation of Side Reactions in Lithium-ion Batteries with Electrolyte Decomposition Products via Overdischarge for Li[Li1/3Ti5/3]O4/Li[Li0.1Al0.1Mn1.8]O4 Cells with an Imbalanced State-of-Charge, Electrochemistry, 91, 047001 (2023). https://doi.org/10.5796/electrochemistry.23-00004

  • Taichi Nakamura, Atsushi Maekawa, and Kingo Ariyoshi, Impact of the electrode potential of negative electrode on the increase in resistance of LiNi1/2Mn3/2O4 positive electrode, Electrochim. Acta, 439, 141731 (2023).  https://doi.org/10.1016/j.electacta.2022.141731

2022

  • Kingo Ariyoshi, Zyun Siroma, Atsushi Mineshige, Mitsuhiro Takeno, Tomokazu Fukutsuka, Takeshi Abe, and Satoshi Uchida, Electrochemical Impedance Spectroscopy Part 1: Fundamentals, Electrochemistry, 90, 102007 (2022). https://doi.org/10.5796/electrochemistry.22-66071

  • Kingo Ariyoshi, Zyun Siroma, Atsushi Mineshige, Mitsuhiro Takeno, Tomokazu Fukutsuka, Takeshi Abe, and Satoshi Uchida, Electrochemical Impedance Spectroscopy Part 2: Applications, Electrochemistry, 90, 102008 (2022). https://doi.org/10.5796/electrochemistry.22-66080

  • Kingo Ariyoshi, Similarity between the redox potentials of 3d transition-metal ions in polyanionic insertion materials and aqueous solutions, Phys. Chem. Chem. Phys., 24, 12984-12992 (2022). https://doi.org/10.1039/d2cp00383j

  • Kingo Ariyoshi, Takayuki Inoue, and Yusuke Yamada, Voltage decay for lithium?excess material of Li[Li1/5Co2/5Mn2/5]O2 during cycling analyzed via backstitch method, J. Solid State Electrochem., 26, 1519-1526 (2022). https://doi.org/10.1007/s10008-022-05184-0

  • Kingo Ariyoshi, Atsushi Maekawa,  and Taichi Nakamura, Quantification analysis and kinetic modeling of crosstalk reactions in lithium-ion batteries using a four-electrode cell, J. Electroanal. Chem., 916, 116383 (2022). https://doi.org/10.1016/j.jelechem.2022.116383

  • Kingo Ariyoshi and Rikuya Suzuki, Experimental Measurement and Quantification of the Local Cell Reaction in Blended Lithium Insertion Electrodes, ChemElectroChem, 9, e202200101 (2022). https://doi.org/10.1002/celc.202200101

  • Kingo Ariyoshi, Kensuke Kajikawa, and Yusuke Yamada, Synthesis and electrochemical properties of a cubic polymorph of LiNi1/2Mn1/2O2 with a spinel framework, J. Solid State Electrochem., 26, 257-267 (2022). https://doi.org/10.1007/s10008-021-05087-6

2021

  • Kingo Ariyoshi, Makoto Eguchi, and Motoyuki Hirooka, Correlation between capacity loss and increase in polarization in 5 V lithium-insertion material of Li[Ni1/2Mn3/2]O4, Solid State Ionics, 371, 115752 (2021). https://doi.org/10.1016/j.ssi.2021.115752

  • Kingo Ariyoshi, Jun Sugawa, and Shumpei Masuda, Clarification of particle size dependence on the rate capabilities of Li[Ni1/2Mn3/2]O4 materials and electrodes by the dilute electrode method, J. Power Sources, 509, 230349 (2021). https://doi.org/10.1016/j.jpowsour.2021.230349

  • Kingo Ariyoshi, Hiroya Yamamoto, and Yusuke Yamada, Synthesis Optimization of Electrochemically Active LiCoMnO4 for High-Voltage Lithium-Ion Batteries, Energy & Fuels, 35, 13449-13456 (2021). https://doi.org/10.1021/acs.energyfuels.1c01866

  • Kingo Ariyoshi and Nan Ukumori, Intragranular Fracture Mechanism of Highly Crystalline Lithium Manganese Oxide during Lithium Insertion/Extraction Reactions, ACS Applied Energy Materials, 4, 8142-8149 (2021). https://doi.org/10.1021/acsaem.1c01442

  • Kingo Ariyoshi, Takaya Ino, and Yusuke Yamada, Effect of Electronic Conductivity on the Polarization Behavior of Li[Li1/3Ti5/3]O4 Electrodes, J. Electrochem. Soc., 168, 070555 (2021). https://doi.org/10.1149/1945-7111/ac163f

  • Kingo Ariyoshi and Jun Sugawa, Determination of Solid-State Li Diffusion Coefficient of Lithium Insertion Materials from Rate Capability Tests on Diluted Electrode, Electrochemistry, 89(2), 157-161 (2021). https://doi.org/10.5796/electrochemistry.20-00136

2020

  • Kingo Ariyoshi, Masumi Tanimoto, and Yusuke Yamada, Impact of Particle Size of Lithium Manganese Oxide on Charge Transfer Resistance and Contact Resistance Evaluated by Electrochemical Impedance Analysis, Electrochim. Acta, 364, 137292 (2020). https://doi.org/10.1016/j.electacta.2020.137292

  • Kingo Ariyoshi, Jun Sugawa, and Shumpei Masuda, Differentiating the Rate Capabilities of Lithium-Nickel-Manganese Oxide Li[Ni1/2Mn3/2]O4 Insertion Materials and Electrodes Using Diluted Electrode Methods, J. Electrochem. Soc., 167, 140517 (2020). https://doi.org/10.1149/1945-7111/abc10a

  • Kingo Ariyoshi, Makoto Eguchi, and Motoyuki Hirooka, Examining the Long-Term Cyclabilities of Li[Ni1/2Mn3/2]O4 and Li[Li0.1Al0.1Mn1.8]O4 Using a Full-Cell Configuration Including LTO-Counter Electrodes with Extra Capacity, J. Electrochem. Soc., 167, 060532 (2020). https://doi.org/10.1149/1945-7111/ab872f

  • Kingo Ariyoshi, Takahide Toda, and Yusuke Yamada, Self-discharge tests to measure side-reaction currents of a Li[Li1/3Ti5/3]O4 electrode, J. Electroanal. Chem., 864, 114110  (2020). https://doi.org/10.1016/j.jelechem.2020.114110

  • Kingo Ariyoshi, Kazuki Yuzawa, and Yusuke Yamada, Reaction Mechanism and Kinetic Analysis of the Solid-State
    Reaction to Synthesize Single-Phase Li2Co2O4 Spinel, J. Phys. Chem. C, 124, 8170-8177 (2020). https://doi.org/10.1021/acs.jpcc.0c01115

  • Motoyuki Hirooka, Tomohito Sekiya, Yoshitomo Omomo, Masayuki Yamada, Hideaki Katayama, Takefumi Okumura, Yusuke Yamada, and Kingo Ariyoshi, Improvement of float charge durability for LiCoO2 electrodes under high
    voltage and storage temperature by suppressing O1-Phase transition, J. Power Sources 463, 228127 (2020). https://doi.org/10.1016/j.jpowsour.2020.228127

  • Kingo Ariyoshi and Shumpei Masuda, Mechanism of Mg extraction from MgMn2O4 during acid digestion, Phys. Chem. Chem. Phys., 22, 4677 (2020). https://doi.org/10.1039/C9CP05829J

  • Kingo Ariyoshi, Takayuki Inoue, and Yusuke Yamada, Elucidation of the origin of voltage hysteresis in xLi2MnO3-(1-x)LiCoO2 using backstitch charge-discharge method, Electrochim. Acta, 334, 135623 (2020). https://doi.org/10.1016/j.electacta.2020.135623

2019

  • Kingo Ariyoshi, Hiroya Yamamoto, and Yusuke Yamada, Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction, Solid State Ionics, 343, 115077 (2019). https://doi.org/10.1016/j.ssi.2019.115077

  • Kingo Ariyoshi, Yuki Fukunishi, and Yusuke Yamada, Comparative Measurements of Side-Reaction Currents of Li[Li1/3Ti5/3]O4 and Li[Li0.1Al0.1Mn1.8]O4 Electrodes in Lithium-Ion Cells and Symmetric Cells, J. Electrochem. Soc. 166, A3314-A3318 (2019). https://doi.org/10.1149/2.0601914jes

  • Motoyuki Hirooka, Tomohito Sekiya, Yoshitomo Omomo, Masayuki Yamada, Hideaki Katayama, Takefumi Okumura, Yusuke Yamada, and Kingo Ariyoshi, Degradation mechanism of LiCoO2 under float charge conditions and high temperatures, Electrochim. Acta, 320, 134596 (2019). https://doi.org/10.1016/j.electacta.2019.134596

  • Kingo Ariyoshi, Satoshi Mizutani, and Yusuke Yamada, Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8]O4 used as lithium-insertion electrodes by the diluted electrode method, J. Power Sources, 435, 226810 (2019). https://doi.org/10.1016/j.jpowsour.2019.226810

  • Kingo Ariyoshi, Takaya Ino, and Yusuke Yamada, Rate capability of carbon-free lithium titanium oxide electrodes related to formation of electronic conduction paths observed by color change, J. Power Sources, 430, 150-156 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.023

  • Kingo Ariyoshi, Yuki Orikasa, Kensuke Kajikawa, and Yusuke Yamada, Li2Ni0.2Co1.8O4 having a spinel framework as a zero-strain positive electrode material for lithium-ion batteries, J. Mater. Chem. A, 7, 13641-13649 (2019). https://doi.org/10.1039/C9TA03191J

  • Kingo Ariyoshi, Yuki Fukunishi, and Yusuke Yamada, Measurement of Side-Reaction Currents on Electrodes of Lithium-Ion Cells Using a Battery Cycler with a High-Precision Current Source, Electrochemistry, 87, 188-192 (2019). https://doi.org/10.5796/electrochemistry.18-00092

2018

  • Kingo Ariyoshi, Satoshi Mizutani, Tomoya Makino, and Yusuke Yamada, A Clue to High Rate Capability of Lithium-Ion Batteries Obtained by an Electrochemical Approach Using "Diluted" Electrode, J. Electrochem. Soc., 165, A3965-A3970 (2018). https://doi.org/10.1149/2.0861816jes

  • Kingo Ariyoshi, Takayuki Inoue, and Yusuke Yamada, Quantitative Analysis of Large Voltage Hysteresis of Lithium Excess Materials by Backstitch Charge and Discharge Method, J. Electrochem. Soc., 165, A2675-A2681 (2018). https://doi.org/10.1149/2.0701811jes

  • Kingo Ariyoshi, Hiroya Yamamoto, and Yusuke Yamada, High dimensional stability of LiCoMnO4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life, Electrochimica Acta 260, 498-503 (2018). https://doi.org/10.1016/j.electacta.2017.12.064

~2018

  • Masatoshi Nagayama, Kingo Ariyoshi, Yuki Yamamoto, and Tsutomu Ohzuku, Characterization of Lithium Insertion Electrodes by Precision Dilatometer: Area-Specific Deformation of Single Electrode, J. Electrochem. Soc., 161, A1388-A1393 (2014).  https://doi.org/10.1149/2.0981409jes

  • Kensuke Nakura, Kingo Ariyoshi, Fujika Ogaki, Kenji Takaoka, Tsutomu Ohzuku, Characterization of Lithium Insertion Electrodes: A Method to Measure Area-Specific Impedance of Single Electrode, J. Electrochem. Soc., 161, A841-A846 (2014).  https://doi.org/10.1149/2.090405jes

  • Kensuke Nakura, Yuta Ohsugi, Mitsuyasu Imazaki, Kingo Ariyoshi, and Tsutomu Ohzuku, Extending Cycle Life of Lithium-Ion Batteries Consisting of Lithium Insertion Electrodes: Cycle Efficiency Versus Ah-Efficiency, J. Electrochem. Soc., 158, A1243-A1249 (2011).  https://doi.org/10.1149/2.002112jes

  • Tsutomu Ohzuku, Masatoshi Nagayama, Kyoji Tsuji, and Kingo Ariyoshi, High-Capacity Lithium Insertion Materials of Lithium Nickle Manganese Oxides for Advanced Lithium-Ion Batteries: Toward Rechargeable Capacitiy More Than 300 mAh/g, J. Mater. Chem,. 21, 10179-10188 (2011).  https://doi.org/10.1039/C0JM04325G

  • Kingo Ariyoshi, Yusuke Maeda, Toru Kawai, and Tsutomu Ohzuku, Effect of Primary Particle Size upon Polarization and Cycling Stability of 5-V lithium Insertion Material of Li[Ni1/2Mn3/2]O4, J. Electrochem. Soc., 158, A281-A284 (2011).  https://doi.org/10.1149/1.3531965

  • Tsutomu Ohzuku, Ryoji Yamato, Toru Kawai, and Kingo Ariyoshi, Steady-State Polarization Measurements of Lithium Insertion Electrodes for High-Power Lithium-Ion Batteries, J. Solid State Electrochem., 12, 979-985 (2008).  https://doi.org/10.1007/s10008-007-0464-4

  • Kingo Ariyoshi, Ryoji Yamato, Yoshinari Makimura, Toru Amazutsumi, Yusuke Maeda, and Tsutomu Ohzuku, Three-volt Lithium-ion Battery Consisting of Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: Improvement of Positive-electrode Material for Long-life Medium-power Applications, Electrochemistry, 76, 46-54 (2008).  https://doi.org/10.5796/electrochemistry.76.46

  • Kingo Ariyoshi, Eiichi Iwata, Minoru Kuniyoshi, Hiromichi Wakabayashi, and Tsutomu Ohzuku, Lithium Aluminum Manganese Oxide (LAMO) Having Spinel-Framework Structure for Long-Life Lithium-Ion Batteries, Electrochem. Solid State Lett., 9, A557-A560 (2006).  https://doi.org/10.1149/1.2360019

  • Kazuhiko Mukai, Kingo Ariyoshi, and Tsutomu Ohzuku, Comparative study of Li[CrTi]O4, Li[Li1/3Ti5/3]O4 and Li1/2Fe1/2[Li1/2Fe1/2Ti]O4 in Non-Aqueous Lithium Cells, J. Power Sources, 146, 213-216 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.019

  • Kingo Ariyoshi, Ryoji Yamato, and Tsutomu Ohzuku, Zero-Strain Insertion Mechanism of Li[Li1/3Ti5/3]O4 for Advanced Lithium-Ion (Shuttlecock) Batteries, Electrochim. Acta, 51, 1125 (2005).  https://doi.org/10.1016/j.electacta.2005.05.053

  • Kingo Ariyoshi, Yasunobu Iwakoshi, Noriaki Nakayama, and Tsutomu Ohzuku, Topotactic Two-Phase Reactions of Li[Ni1/2Mn3/2]O4 (P4332) in Nonaqueous Lithium Cells, J. Electrochem. Soc., 151, A296-A303 (2004).  https://doi.org/10.1149/1.1639162

  • Kingo Ariyoshi, Satoshi Yamamoto, and Tsutomu Ohzuku, Three-Volt Lithium-Ion Battery with Li[Ni1/2Mn3/2]O4 and the Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4, J. Power Sources, 119-121, 959-963 (2003).  https://doi.org/10.1016/S0378-7753(03)00298-2

  • Tsutomu Ohzuku, Kingo Ariyoshi, and Satoshi Yamamoto, Synthesis and Characterization of Li[Ni1/2Mn3/2]O4 by Two-Step Solid State Reaction, J. Ceram. Soc., Japan, 110, 501-505 (2002).  https://doi.org/10.2109/jcersj.110.501

  • Tsutomu Ohzuku, Kingo Ariyoshi, Satoshi Yamamoto, and Yoshinari Makimura, A 3-Volt Lithium-Ion Cell with Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: A Method to Prepare Stable Positive-Electrode Material of Highly Crystallized Li[Ni1/2Mn3/2]O4, Chem. Lett., 30, 1270-1271 (2001).  https://doi.org/10.1246/cl.2001.1270

  • Tsutomu Ohzuku, Kingo Ariyoshi, Sachio Takeda, and Yoichi Sakai, Synthesis and Characterization of 5 V Insertion Material of Li[FeyMn2-y]O4 for Lithium-Ion Batteries, Electrochim. Acta, 46, 2327-2336 (2001).  https://doi.org/10.1016/S0013-4686(00)00725-8