CV
山田 裕介
略歴
平成 5年 |
大阪大学理学部 高分子学科 卒業 |
平成10年 |
大阪大学大学院理学研究科 高分子学専攻 博士(後期)課程 修了 博士(理学) |
平成10年 |
通商産業省 工業技術院 大阪工業技術研究所(現・産業技術総合研究所) エネルギー・環境材料部 任期付研究員(通商産業技官) |
平成13年 |
独立行政法人 産業技術総合研究所 生活環境系特別研究体 研究員 |
平成16年 |
独立行政法人 産業技術総合研究所 ユビキタスエネルギー研究部門 研究員 |
平成17年 |
同 主任研究員 |
平成19 – 20年 |
カリフォルニア大学バークレー校 客員研究員 |
平成21 – 26年 |
国立大学法人 大阪大学大学院工学研究科生命先端工学専攻(福住研究室)准教授 独立行政法人 産業技術総合研究所 招へい研究員 |
平成27年より |
公立大学法人 大阪市立大学大学院工学研究科化学生物系専攻 教授 |
所属学会
日本化学会、触媒学会、錯体化学会
Research map ID: 6000023838 (https://researchmap.jp/read0151130)
ORCID ID: 0000-0001-6259-5255 (https://orcid.org/0000-0001-6259-5255)
ResearcherID: W-6736-2019 (https://www.webofscience.com/wos/author/record/W-6736-2019)
原著論文(英文:180報、和文:1報)(2024.10.17)
1. Utilisation of in situ formed cyano-bridged coordination polymers as precursors of supported Ir–Ni alloy nanoparticles with precisely controlled compositions and sizes, Y. Yamada*, M. Nishida, T. Nakabayashi, T. Nakazono, H. Lin, P. Chen, M. Tamura*, Dalton Trans. in press (DOI: 10.1039/d4dt02386b)
2. Enhanced catalytic activity of solubilised species obtained by counter-cation exchange of K{CoII1.5[FeII(CN)6]} for water oxidation, Y. Seki, T. Nakazono, H. Tabe, Y. Yamada*, Chem. Sci. in press. (DOI: 10.1039/d4sc04390a)
3. Insulated π‐Conjugated Azido Scaffolds for Stepwise Functionalization via Huisgen Cycloaddition on Metal Oxide Surfaces, Q. C. Jiang, T. Iwai, M. Jo, T. Hosomi, T. Yanagida, K. Uchida, K. Hashimoto, T. Nakazono, Y. Yamada, J. Terao*, Small, 2403717 (2024). (DOI: 10.1002/smll.202403717)
4. High Power Density of a Hydrogen Peroxide Fuel Cell Using Cobalt Chlorin Complex Supported on Carbon Nanotubes as a Noncorrosive Anode, K. Hashimoto, T. Nakazono and Y. Yamada*, Inorg. Chem. , 63, 1347-1355 (2024). (DOI: 10.1021/acs.inorgchem.3c03857)
5. Electrochemical hydrogen evolution reaction catalysed by a dinuclear cobalt complex with doubly N-confused hexaphyrin, R. Takada, T. Nakazono*, T. Nishimura, T. Shiga, M. Nihei, Y. Yamada, T. Wada*, Sustainable Energy Fuels, 7, 3603-3608 (2023). (DOI: 10.1039/d3se00403a)
6. Photochemical CO 2 Reduction to CO Catalyzed by a Doubly N-Confused Hexaphyrin Dinuclear Iron Complex, T. Nakazono*, D. Sugawara, T. Ito, Y. Yamada, T. Wada*, Chem. Lett., 52 , 481-484 (2023). (DOI: 10.1246/cl.230141)
7. Efficient electrocatalytic H2O 2 evolution utilizing electron-conducting molecular wires spatially separated by rotaxane encapsulation, S.-Y. Chou, H. Masai*, M. Otani, H. V. Miyagishi, G. Sakamoto, Y. Yamada*, Y. Kinoshita, H. Tamiaki, T. Katase, H. Ohta, T. Kondo, A. Nakada, R. Abe, T. Tanaka, K. Uchida, J. Terao*, Appl. Catal. B: Environmental, 327, 122373 (2023). (DOI: 10.1016/j.apcatb.2023.122373)
8. Synergistic Effect of Fe II and Mn II Ions in Cyano-Bridged Heterometallic Coordination Polymers on Catalytic Selectivity of Benzene Oxygenation to Phenol, H. Tabe, Y. Seki, M. Yamane, T. Nakazono, Y. Yamada*, J. Phys. Chem. Lett., 14, 158-163 (2023). (DOI: 10.1021/acs.jpclett.2c02939)
9. Mechanism for Catalytic Stability Enhancement of FeIII[CoIII(CN)6] by Doping Divalent Ions for Organophosphate Hydrolysis, Y. Seki, H. Tabe, Y. Yamada*, J. Phys. Chem. C 126, 5564-5574 (2022). (DOI: 10.1021/acs.jpcc.2c00772)
10. Heterogeneous Catalysis of Lanthanoid Ions for the Hydrolysis of p‑Nitrophenyl Phosphate Enhanced by Incorporation to Cyano-Bridged Heterometallic Coordination Polymers, H. Tabe, S. Yorozu, Y. Yamada*, J. Phys. Chem. C, 126, 4365-4373 (2022). (DOI: 10.1021/acs.jpcc.1c10369)
11. Cobalt hexacyanoferrate as an effective cocatalyst boosting water oxidation on oxynitride TaON photocatalyst under visible light, H. Matsuoka, O. Tomita, H. Tabe, H. Suzuki, Y. Yamada, R. Abe*, J. Photochem. Photobiol. A: Chem. 426, 113753 (2022). (DOI: 10.1016/j.jphotochem.2021.113753)
12. Voltage decay for lithium-excess material of Li[Li1/5Co2/5Mn2/5]O 2 during cycling analyzed via backstitch method, K. Ariyoshi*, T. Inoue, Y. Yamada, J. Solid State Electrochem. (2022). (DOI: 10.1007/s10008-022-05184-0)
13. Efficient capturing of hydrogen peroxide in dilute aqueous solution by co-crystallization with amino acids, R. Yamaguchi, R. Tanaka, M. Maetani, H. Tabe, Y. Yamada*, CrystEngComm 23, 5456-5462 (2021). (DOI: 10.1039/d1ce00688f)
14. Enhanced catalytic stability of acid phosphatase immobilized in the mesospaces of a SiO2-nanoparticles assembly for catalytic hydrolysis of organophosphates, H. Tabe, H. Oshima, S. Ikeyama, Y. Amao*, Y. Yamada*, Mol. Catal. 510 (2021). (DOI: 10.1016/j.mcat.2021.111669)
15. RuO 2 Nanoparticle-Embedded Graphitic Carbon Nitride for Efficient Photocatalytic H 2 Evolution, Y. Shimoyama, K. Koga, H. Tabe, Y. Yamada, Y. Kon, D. Hong*, ACS Appl. Nano Mater. 4, 11700-11708 (2021). (DOI: 10.1021/acsanm.1c02301)
16. Enhancing the electrocatalytic activity via hybridization of Cu(I/II) oxides with Co3O 4 towards oxygen electrode reactions, K. K. Hazarika, Y. Yamada, E. V. Matus, M. Kerzhentsev, P. Bharali*, J. Power Sources 490 (2021). (DOI: 10.1016/j.jpowsour.2021.229511)
17. Nonprecious Hybrid Metal Oxide for Bifunctional Oxygen Electrodes: Endorsing the Role of Interfaces in Electrocatalytic Enhancement, C. Goswami, K. K. Hazarika, Y. Yamada, P. Bharali*, Energy Fuels 35, 13370-13381 (2021). (DOI: 10.1021/acs.energyfuels.1c01388)
18. Pd2CuCo/C Hybrid with Nanoflower Morphology toward Oxygen Reduction and Formic Acid Oxidation Reactions: Experimental and Computational Studies, B. J. Borah, C. Goswami, Y. Yamada, K. Tada, S. Tanaka, P. Bharali, Energy Fuels 35, 11515-11524 (2021). (DOI: 10.1021/acs.energyfuels.1c00487)
19. Synthesis Optimization of Electrochemically Active LiCoMnO 4 for High-Voltage Lithium-Ion Batteries, K. Ariyoshi*, H. Yamamoto, Y. Yamada, Energy Fuels 35, 13449-13456 (2021). (DOI: 10.1021/acs.energyfuels.1c01866)
20. Synthesis and electrochemical properties of a cubic polymorph of LiNi1/2Mn1/2O 2 with a spinel framework, K. Ariyoshi*, K. Kajikawa, Y. Yamada, J. Solid State Electrochem. 26, 257-267 (2021). (DOI: 10.1007/s10008-021-05087-6)
21. Effect of Electronic Conductivity on the Polarization Behavior of Li[Li1/3Ti5/3]O 4 Electrodes, K. Ariyoshi*, T. Ino, Y. Yamada, J. Electrochem. Soc. 168 (2021). (DOI: 10.1149/1945-7111/ac163f)
22. Single-Crystal-to-Single-Crystal Installation of Ln4(OH) 4 Cubanes in an Anionic Metallosupramolecular Framework, N. Yoshinari, N. Meundaeng, H. Tabe, Y. Yamada, S. Yamashita, Y. Nakazawa, T. Konno*, Angew. Chem. Int. Ed. 59, 18048-18053 (2020). (DOI: 10.1002/anie.202008296)
23. Single Open Sites on Fe II Ions Stabilized by Coupled Metal Ions in CN-Deficient Prussian Blue Analogues for High Catalytic Activity in the Hydrolysis of Organophosphates, M. Yamane, H. Tabe, M. Kawakami, H. Tanaka, T. Kawamoto, Y. Yamada*, Inorg. Chem. (2020). (DOI: 10.1021/acs.inorgchem.0c02528)
24. Immobilization of Ir(OH) 3 Nanoparticles in Mesospaces of Al-SiO 2 Nanoparticles Assembly to Enhance Stability for Photocatalytic Water Oxidation, G. Sakamoto, H. Tabe, Y. Yamada*, Catalysts 10 (2020). (DOI: 10.3390/catal10091015)
25. Utilization of core-shell nanoparticles to evaluate subsurface contribution to water oxidation catalysis of [CoII(H2O)2]1.5[CoIII(CN)6] nanoparticles, H. Tabe, A. Kitase, Y. Yamada*, Appl. Catal., B 262, 118101 (2020). (DOI: 10.1016/j.apcatb.2019.118101)
26. Improvement of float charge durability for LiCoO 2 electrodes under high voltage and storage temperature by suppressing O1-Phase transition, M. Hirooka*, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama, T. Okumura, Y. Yamada, K. Ariyoshi, J. Power Sources 463, 228127 (2020). (DOI: 10.1016/j.jpowsour.2020.228127)
27. Elucidating the Role of Oxide-Oxide/Carbon Interfaces of CuOx-CeO2/C in Boosting Electrocatalytic Performance, C. Goswami, Y. Yamada, E. V. Matus, I. Z. Ismagilov, M. Kerzhentsev, P. Bharali*, Langmuir 36, 15141-15152 (2020). (DOI: 10.1021/acs.langmuir.0c02754)
28. Unravelling the Role of Metallic Cu in Cu-CuFe2O4/C Nanohybrid for Enhanced Oxygen Reduction Electrocatalysis, B. J. Borah, Y. Yamada, P. Bharali*, ACS Appl. Energy Mater. 3, 3488-3496 (2020). (DOI: 10.1021/acsaem.0c00006)
29. Reaction Mechanism and Kinetic Analysis of the Solid-State Reaction to Synthesize Single-Phase Li2Co2O 4 Spinel, K. Ariyoshi*, K. Yuzawa, Y. Yamada*, J. Phys. Chem. C 124, 8170-8177 (2020). (DOI: 10.1021/acs.jpcc.0c01115)
30. Self-discharge tests to measure side-reaction currents of a Li[Li1/3Ti5/3]O 4 electrode, K. Ariyoshi*, T. Toda, Y. Yamada, J. Electroanal. Chem. 864, 114110 (2020). (DOI: 10.1016/j.jelechem.2020.114110)
31. Impact of particle size of lithium manganese oxide on charge transfer resistance and contact resistance evaluated by electrochemical impedance analysis, K. Ariyoshi*, M. Tanimoto, Y. Yamada, Electrochim. Acta 364, 137292 (2020). (DOI: 10.1016/j.electacta.2020.137292)
32. Elucidation of the origin of voltage hysteresis in xLi2MnO3∙(1−x)LiCoO 2 using backstitch charge-discharge method, K. Ariyoshi*, T. Inoue, Y. Yamada*, Electrochim. Acta 334, 135623 (2020). (DOI: 10.1016/j.electacta.2020.135623)
33. Creation and stabilisation of tuneable open metal sites in thiocyanato-bridged heterometallic coordination polymers to be used as heterogeneous catalysts, H. Tabe, M. Matsushima, R. Tanaka, Y. Yamada*, Dalton Trans 48, 17063-17069 (2019). (DOI: 10.1039/c9dt03679b)
34. Li2Ni0.2Co1.8O 4 having a spinel framework as a zero-strain positive electrode material for lithium-ion batteries, K. Ariyoshi, Y. Orikasa, K. Kajikawa,Y. Yamada, J. Mater. Chem. A 7, 13641-13649 (2019). (DOI: 10.1039/C9TA03191J)
35. Comparative Measurements of Side-Reaction Currents of Li[Li1/3Ti5/3]O 4 and Li[Li0.1Al0.1Mn1.8]O 4 Electrodes in Lithium-Ion Cells and Symmetric Cells, K. Ariyoshi*, Y. Fukunishi, Y. Yamada*, J. Electrochem. Soc. 166, A3314-A3318 (2019). (DOI: 10.1149/2.0601914jes)
36. Unique Half Embedded/Exposed PdFeCu/C Interfacial Nanoalloy as High‐Performance Electrocatalyst for Oxygen Reduction Reaction, B. J. Borah, H. Saikia, C. Goswami, K. Kashyap Hazarika, Y. Yamada, P. Bharali*, ChemCatChem (2019). (DOI: 10.1002/cctc.201900469)
37. Degradation mechanism of LiCoO 2 under float charge conditions and high temperatures, M. Hirooka*, T. Sekiya, Y. Omomo, M. Yamada, H. Katayama, T. Okumura, Y. Yamada, K. Ariyoshi, Electrochim. Acta 320, 134596 (2019). (DOI: 10.1016/j.electacta.2019.134596)
38. Relationship between changes in ionic radius and lattice dimension of lithium manganese oxide spinels during lithium insertion/extraction, K. Ariyoshi*, H. Yamamoto, Y. Yamada*, Solid State Ionics 343, 115077 (2019). (DOI: 10.1016/j.ssi.2019.115077)
39. Electrochemical impedance analysis of Li[Li0.1Al0.1Mn1.8]O 4 used as lithium-insertion electrodes by the diluted electrode method, K. Ariyoshi*, S. Mizutani, Y. Yamada*, J. Power Sources 435, 226810 (2019). (DOI: 10.1016/j.jpowsour.2019.226810)
40. Rate capability of carbon-free lithium titanium oxide electrodes related to formation of electronic conduction paths observed by color change, K. Ariyoshi*, T. Ino, Y. Yamada*, J. Power Sources 430, 150-156 (2019). (DOI: 10.1016/j.jpowsour.2019.05.023)
41. Measurement of Side-Reaction Currents on Electrodes of Lithium-Ion Cells Using a Battery Cycler with a High-Precision Current Source, K. Ariyoshi*, Y. Fukunishi, Y. Yamada*, Electrochemistry 87, 188-192 (2019). (DOI: 10.5796/electrochemistry.18-00092)
42. Effect of surface acidity of cyano-bridged polynuclear metal complexes on the catalytic activity for the hydrolysis of organophosphates, H. Tabe, C. Terashima, Y. Yamada*, Catal. Sci. Technol. 8, 4747-4756 (2018). (DOI: 10.1039/c8cy01015c)
43. Photocatalytic hydrogen evolution systems constructed in cross-linked porous protein crystals, H. Tabe, H. Takahashi, T. Shimoi, S. Abe, T. Ueno*, Y. Yamada*, Appl. Catal. B: Environmental237, 1124-1129 (2018). (DOI: 10.1016/j.apcatb.2018.01.046)
44. Cobalt-Copper Nanoparticles Catalyzed Selective Oxidation Reactions: Efficient Catalysis at Room Temperature, B. J. Borah, A. Mahanta, M. Mondal, H. Gogoi, Y. Yamada*, P. Bharali*, ChemistrySelect 3, 9826-9832 (2018). (DOI: 10.1002/slct.201801140)
45. High dimensional stability of LiCoMnO 4 as positive electrodes operating at high voltage for lithium-ion batteries with a long cycle life, K. Ariyoshi*, H. Yamamoto, Y. Yamada*, Electrochim. Acta 260, 498-503 (2018). (DOI: 10.1016/j.electacta.2017.12.064)
46. A Clue to High Rate Capability of Lithium-Ion Batteries Obtained by an Electrochemical Approach Using “Diluted” Electrode, K. Ariyoshi*, S. Mizutani, T. Makino, Y. Yamada*, J. Electrochem. Soc. 165, A3965-A3970 (2018). (DOI: 10.1149/2.0861816jes)
47. Quantitative Analysis of Large Voltage Hysteresis of Lithium Excess Materials by Backstitch Charge and Discharge Method, K. Ariyoshi*, T. Inoue, Y. Yamada*, J. Electrochem. Soc. 165, A2675-A2681 (2018). (DOI: 10.1149/2.0701811jes)
48. Photocatalytic water oxidation by persulphate with a Ca 2+ ion-incorporated polymeric cobalt cyanide complex affording O 2 with 200% quantum efficiency, Y. Yamada*, K. Oyama, T. Suenobu, S. Fukuzumi*, Chem. Commun. 53, 3418-3421 (2017). (DOI: 10.1039/c7cc00199a)
49. Heterogeneous catalase-like activity of gold(I)–cobalt(III) metallosupramolecular ionic crystals, M. Yamada, N. Yoshinari, N. Kuwamura, T. Saito, S. Okada, S. P. Maddala, K. Harano, E. Nakamura, K. Yamagami, K. Yamanaka, A. Sekiyama, T. Suenobu, Y. Yamada, T. Konno*, Chem. Sci. 8, 2671-2676 (2017). (DOI: 10.1039/C6SC04993A)
50. Synthesis of CuPd alloy nanoparticles with high efficacy for aqueous phase catalytic reduction of nitroaromatics and hexavalent chromium, H. Saikia, B. J. Borah, Y. Yamada, P. Bharali*, J. Colloid Interface Sci. 486, 46-57 (2017). (DOI: 10.1016/j.jcis.2016.09.056)
51. Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel, Y. Aratani, T. Suenobu, K. Ohkubo, Y. Yamada*, S. Fukuzumi*, Chem. Commun. 53, 3473-3476 (2017). (DOI: 10.1039/C7CC00621G)
52. Nanofabrication of a Solid-State, Mesoporous Nanoparticle Composite for Efficient Photocatalytic Hydrogen Generation, Y. Yamada*, H. Tadokoro, M. Naqshbandi, J. Canning, M. J. Crossley*, T. Suenobu, S. Fukuzumi*, ChemPlusChem 81, 521-525 (2016). (DOI: 10.1002/cplu.201600148)
53. An effective preparation method of composite photocatalysts forhydrogen evolution using an organic photosensitizer and metalparticles assembled on alumina-silica, Y. Yamada*, H. Tadokoro, S. Fukuzumi*, Catal. Today 278, 303-311 (2016). (DOI: 10.1016/j.cattod.2016.01.018 )
54. Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and a Cobalt(II) Chlorin Complex, K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi*, ACS Energy Letters 1, 913-919 (2016). (DOI: 10.1021/acsenergylett.6b00415)
55. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel, K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi*, Nat. Commun. 7, 11470 (2016). (DOI: 10.1038/ncomms11470)
56. Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen, Y. Isaka, Y. Yamada*, T. Suenobu, T. Nakagawa, S. Fukuzumi*, RSC Adv. 6, 42041-42044 (2016). (DOI: 10.1039/C6RA06814F)
57. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts, Y. Isaka, K. Oyama, Y. Yamada*, T. Suenobu, S. Fukuzumi*, Catal. Sci. Technol. 6, 681-684 (2016). (DOI: 10.1039/c5cy01845e)
58. Hydrogen Peroxide Used as a Solar Fuel in One-Compartment Fuel Cells, S. Fukuzumi*, Y. Yamada*, ChemElectroChem 3, 1978-1989 (2016). (DOI: 10.1002/celc.201600317)
59. Homogeneous and Heterogeneous Photocatalytic Water Oxidation by Persulfate, S. Fukuzumi*, J. Jung, Y. Yamada*, T. Kojima*, W. Nam*, Chem. Asian J. 11, 1138-1150 (2016). (DOI: 10.1002/asia.s01501329)
60. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing Fe(II) and Ru(II) Incorporated in Mesoporous Silica-Alumina, Y. Aratani, K. Oyama, T. Suenobu, Y. Yamada*, S. Fukuzumi*, Inorg Chem 55, 5780-5786 (2016). (DOI: 10.1021/acs.inorgchem.5b02909)
61. High and robust performance of H2O 2 fuel cells in the presence of scandium ion, Y. Yamada*, M. Yoneda, S. Fukuzumi*, Energy Environ. Sci. 8, 1698-1701 (2015). (DOI: 10.1039/c5ee00748h)
62. Ni–Cu alloy nanoparticles loaded on various metal oxides acting as efficient catalysts for photocatalytic H 2 evolution, Y. Yamada*, S. Shikano, S. Fukuzumi*, RSC Adv. 5, 44912-44919 (2015). (DOI: 10.1039/C5RA04838A)
63. Synergistic effects of Ni and Cu supported on TiO 2 and SiO 2 on photocatalytic H 2 evolution with an electron donor–acceptor linked molecule, Y. Yamada*, S. Shikano, T. Akita, S. Fukuzumi*, Catal. Sci. Technol. 5, 979-988 (2015). (DOI: 10.1039/c4cy01128g)
64. High Catalytic Activity of Heteropolynuclear Cyanide Complexes Containing Cobalt and Platinum Ions: Visible-Light Driven Water Oxidation, Y. Yamada*, K. Oyama, R. Gates, S. Fukuzumi*, Angew. Chem. Int. Ed. 54, 5613-5617 (2015). (DOI: 10.1002/anie.201501116)
65. A composite photocatalyst of an organic electron donor-acceptor dyad and a Pt catalyst supported on semiconductor nanosheets for efficient hydrogen evolution from oxalic acid, Y. Yamada*, A. Nomura, H. Tadokoro, S. Fukuzumi*, Catal. Sci. Technol. 5, 428-437 (2015). (DOI: 10.1039/c4cy01005a)
66. Photocatalytic H 2 evolution from NADH with carbon quantum dots/Pt and 2-phenyl-4-(1-naphthyl)quinolinium ion, W. Wu, L. Zhan, K. Ohkubo, Y. Yamada, M. Wu, S. Fukuzumi*, J. Photochem. Photobiol. B 152, 63-70 (2015). (DOI: 10.1016/j.jphotobiol.2014.10.018)
67. Metal-free hydrogen evolution with nanoparticles derived from pyrene via two-photon ionization induced by laser irradiation, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi*, Chem. Commun. 51, 11515-11518 (2015). (DOI: 10.1039/C5CC03501E)
68. Singlet oxygen generation from Li+@C 60 nano-aggregates dispersed by laser irradiation in aqueous solution, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi*, Chem. Commun. 51, 8082-8085 (2015). (DOI: 10.1039/C5CC01885D)
69. Laser-Induced Pinpoint Hydrogen Evolution from Benzene and Water Using Metal Free Single-Walled Carbon Nanotubes with High Quantum Yields, K. Ohkubo, N. Kohno, Y. Yamada, S. Fukuzumi*, Chem. Sci. 6, 666-674 (2015). (DOI: 10.1039/C4SC02269F)
70. Bottom up and top down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide from water and dioxygen with a ruthenium complex and water oxidation catalysts, Y. Isaka, S. Kato, D. Hong, T. Suenobu, Y. Yamada, S. Fukuzumi*, J. Mater. Chem. A 3, 12404-12412 (2015). (DOI: 10.1039/C5TA02446C)
71. Selective hydroxylation of benzene derivatives and alkanes with hydrogen peroxide catalysed by a manganese complex incorporated into mesoporous silica–alumina, Y. Aratani, Y. Yamada*, S. Fukuzumi*, Chem. Commun. 51, 4662-4665 (2015). (DOI: 10.1039/C4CC09967B)
72. High Power Density of One-Compartment H2O 2 Fuel Cells Using Pyrazine-Bridged Fe[MC(CN)4] (M C = Pt 2+ and Pd2+) Complexes as the Cathode, Y. Yamada*, M. Yoneda, S. Fukuzumi*, Inorg. Chem. 53, 1272-1274 (2014). (DOI: 10.1021/ic403008d)
73. Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution, D. Hong, Y. Yamada, M. Sheehan, S. Shikano, C.-H. Kuo, M. Tian, C.-K. Tsung*, S. Fukuzumi*, ACS Sustainable Chem. Eng. 2, 2588-2594 (2014). (DOI: 10.1021/sc500484b)
74. Thermal and Photocatalytic Production of Hydrogen Peroxide and Its Use in Hydrogen Peroxide Fuel Cells, S. Fukuzumi*, Y. Yamada, Aust. J. Chem. 67, 354-364 (2014). (DOI: 10.1071/CH13436)
75. A robust one-compartment fuel cell with a polynuclear cyanide complex as a cathode for utilizing H2O 2 as a sustainable fuel at ambient conditions, Y. Yamada*, M. Yoneda, S. Fukuzumi, Chem.–Eur. J. 19, 11733-11741 (2013). (DOI: 10.1002/chem.201300783)
76. Hybrid H 2 evolution catalysts: in-situ formation of H 2 evolution catalysts from metal salts inside the mesopores of silica-alumina supporting an organic photosensitiser, Y. Yamada, H. Tadokoro, S. Fukuzumi*, RSC Adv. 3, 25677-25680 (2013). (DOI: 10.1039/c3ra44534h)
77. Robustness of Ru/SiO 2 as a Hydrogen-Evolution Catalyst in a Photocatalytic System Using an Organic Photocatalyst, Y. Yamada, S. Shikano, S. Fukuzumi*, J. Phys. Chem. C 117, 13143-13152 (2013). (DOI: 10.1021/jp403925v)
78. The long-lived electron transfer state of the 2-phenyl-4-(1-naphthyl)quinolinium ion incorporated into nanosized mesoporous silica-alumina acting as a robust photocatalyst in water, Y. Yamada, A. Nomura, K. Ohkubo, T. Suenobu, S. Fukuzumi*, Chem. Commun. 49, 5132-5134 (2013). (DOI: 10.1039/c3cc41575a)
79. Acetate Induced Enhancement of Photocatalytic Hydrogen Peroxide Production from Oxalic Acid and Dioxygen, Y. Yamada, A. Nomura, T. Miyahigashi, K. Ohkubo, S. Fukuzumi*, J. Phys. Chem. A 117, 3751-3760 (2013). (DOI: 10.1021/jp312795f)
80. Protonation equilibrium and hydrogen production by a dinuclear cobalt-hydride complex reduced by cobaltocene with trifluoroacetic Acid, S. Mandal, S. Shikano, Y. Yamada, Y. M. Lee, W. Nam*, A. Llobet*, S. Fukuzumi*, J. Am. Chem. Soc. 135, 15294-15297 (2013). (DOI: 10.1021/ja408080z)
81. Catalytic activity of NiMnO 3 for visible light-driven and electrochemical water oxidation, D. Hong, Y. Yamada, A. Nomura, S. Fukuzumi*, Phys. Chem. Chem. Phys. 15, 19125-19128 (2013). (DOI: 10.1039/c3cp53518e)
82. Water Oxidation Catalysis with Nonheme Iron Complexes under Acidic and Basic Conditions: Homogeneous or Heterogeneous?, D. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam*, A. Llobet*, S. Fukuzumi*, Inorg. Chem. 52, 9522-9531 (2013). (DOI: 10.1021/ic401180r)
83. Shape- and Size-Controlled Nanomaterials for Artificial Photosynthesis, S. Fukuzumi*, Y. Yamada, CHEMSUSCHEM 6, 1834-1847 (2013). (DOI: 10.1002/cssc.v6.10/issuetoc)
84. Bioinspired Photocatalytic Water Reduction and Oxidation with Earth-Abundant Metal Catalysts, S. Fukuzumi*, D. Hong, Y. Yamada, J. Phys. Chem. Lett. 4, 3458-3467 (2013). (DOI: 10.1021/jz401560x)
85. Decorating single layer graphene oxide with electron donor and acceptor molecules for the study of photoinduced electron transfer, S. K. Das, C. B. Kc, K. Ohkubo, Y. Yamada, S. Fukuzumi*, F. D’Souza*, Chem. Commun. 49, 2013-2015 (2013). (DOI: DOI: 10.1039/C3CC38898K)
86. LaCoO 3 acting as an efficient and robust catalyst for photocatalytic water oxidation with persulfate, Y. Yamada, K. Yano, D. Hong, S. Fukuzumi*, Phys. Chem. Chem. Phys. 14, 5753-5760 (2012). (DOI: 10.1039/c2cp00022a)
87. Photocatalytic hydrogen evolution using 9-phenyl-10-methyl-acridinium ion derivatives as efficient electron mediators and Ru-based catalysts, Y. Yamada, K. Yano, S. Fukuzumi*, Aust. J. Chem. 65, 1573–1581 (2012). (DOI:
88. Catalytic application of shape-controlled Cu2O particles protected by Co3O 4 nanoparticles for hydrogen evolution from ammonia borane, Y. Yamada*, K. Yano, S. Fukuzumi*, Energy Environ. Sci. 5, 5356-5363 (2012). (DOI: 10.1039/c1ee02639a)
89. Photocatalytic production of hydrogen peroxide by two-electron reduction of dioxygen with carbon-neutral oxalate using 2-phenyl-4-(1-naphthyl)quinolinium ion as a robust photocatalyst, Y. Yamada, A. Nomura, T. Miyahigashi, S. Fukuzumi*, Chem. Commun. 48, 8329-8331 (2012). (DOI: 10.1039/c2cc34170k)
90. Photocatalytic hydrogen evolution from carbon-neutral oxalate with 2-phenyl-4-(1-naphthyl)quinolinium ion and metal nanoparticles, Y. Yamada, T. Miyahigashi, K. Ohkubo, S. Fukuzumi*, Phys. Chem. Chem. Phys. 14, 10564-10571 (2012). (DOI: 10.1039/c2cp41906h)
91. Photocatalytic hydrogen evolution with Ni nanoparticles by using 2-phenyl-4-(1-naphthyl)quinolinium ion as a photocatalyst, Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi*, Energy Environ. Sci. 5, 6111-6118 (2012). (DOI: 10.1039/c2ee03106j)
92. Improvement of durability of an organic photocatalyst in p-xylene oxygenation by addition of a Cu(II) complex, Y. Yamada, K. Maeda, K. Ohkubo, K. D. Karlin*, S. Fukuzumi*, Phys. Chem. Chem. Phys. 14, 9654-9659 (2012). (DOI: 10.1039/c2cp41207a)
93. Excitation energy transfer from non-aggregated molecules to perylenediimide nanoribbons via ionic interactions in water, M. Supur, Y. Yamada, S. Fukuzumi*, J. Mater. Chem. 22, 12547-12552 (2012). (DOI: 10.1039/c2jm31661g)
94. γ-Al2−xMxO 3±y (M = Ti 4+ through Ga3+): potential pseudo-3D mesoporous materials with tunable acidity and electronic structure, T. Mathew, K. Sivaranjani, E. S. Gnanakumar, Y. Yamada, T. Kobayashi, C. S. Gopinath*, J. Mater. Chem. 22, 13484-13493 (2012). (DOI: 10.1039/c2jm31184d)
95. Porphyrin nanochannels reinforced by hydrogen bonding, T. Ishizuka, M. Sankar, Y. Yamada, S. Fukuzumi, T. Kojima*, Chem. Commun. 48, 6481-6483 (2012). (DOI: 10.1039/c2cc31142a)
96. Catalysis of Nickel Ferrite for Photocatalytic Water Oxidation Using [Ru(bpy)3] 2+ and S2O82–, D. Hong, Y. Yamada, T. Nagatomi, Y. Takai, S. Fukuzumi*, J. Am. Chem. Soc. 134, 19572-19575 (2012). (DOI: 10.1021/ja309771h)
97. Efficient water oxidation by cerium ammonium nitrate with [IrIII(Cp*)(4,4′-bishydroxy-2,2′-bipyridine)(H2O)] 2+ as a precatalyst, D. Hong, M. Murakami, Y. Yamada, S. Fukuzumi*, Energy Environ. Sci. 5, 5708-5716 (2012). (DOI: 10.1039/c2ee02964b)
98. Water-soluble mononuclear cobalt complexes with organic ligands acting as precatalysts for efficient photocatalytic water oxidation, D. Hong, J. Jung, J. Park, Y. Yamada, T. Suenobu, Y.-M. Lee, W. Nam*, S. Fukuzumi*, Energy Environ. Sci. 5, 7606-7616 (2012). (DOI: 10.1039/c2ee21185h)
99. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell, S. Fukuzumi*, Y. Yamada, K. D. Karlin*, Electrochim. Acta 82, 493-511 (2012). (DOI: 10.1016/j.electacta.2012.03.132)
100. Catalytic activity of metal-based nanoparticles for photocatalytic water oxidation and reduction, S. Fukuzumi*, Y. Yamada, J. Mater. Chem. 22, 24284-24296 (2012). (DOI: 10.1039/c2jm32926c)
101. Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity, S. Fukuzumi*, K. DOI, A. Itoh, T. Suenobu, K. Ohkubo, Y. Yamada, K. D. Karlin*, Proc. Natl. Acad. Sci. USA 109, 15572-15577 (2012). (DOI: 10.1073/pnas.1119994109/-/DCSupplemental)
102. Protonated iron–phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions, Y. Yamada*, S. Yoshida, T. Honda, S. Fukuzumi*, Energy Environ. Sci. 4, 2822-2825 (2011). (DOI: 10.1039/c1ee01587g)
103. Nanocrystal bilayer for tandem catalysis, Y. Yamada, C.-K. Tsung, W. Huang, Z. Huo, S. E. Habas, T. Soejima, C. E. Aliaga, G. A. Somorjai, P. Yang*, Nature Chemistry 3, 372-376 (2011). (DOI: 10.1038/nchem.1018)
104. Photocatalytic hydrogen evolution under highly basic conditions by using Ru nanoparticles and 2-phenyl-4-(1-naphthyl)quinolinium ion, Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo, S. Fukuzumi*, J. Am. Chem. Soc. 133, 16136-16145 (2011). (DOI: 10.1021/ja206079e)
105. Electron Delocalization in One-Dimensional Perylenediimide Nanobelts through Photoinduced Electron Transfer, M. Supur, Y. Yamada, M. E. El-Khouly, T. Honda, S. Fukuzumi*, J. Phys. Chem. C 115, 15040-15047 (2011). (DOI: 10.1021/jp204417v)
106. Size- and shape-dependent activity of metal nanoparticles as hydrogen-evolution catalysts: mechanistic insights into photocatalytic hydrogen evolution, H. Kotani, R. Hanazaki, K. Ohkubo, Y. Yamada, S. Fukuzumi*, Chem. Eur. J. 17, 2777-2785 (2011). (DOI: 10.1002/chem.201002399)
107. Catalytic mechanisms of hydrogen evolution with homogeneous and heterogeneous catalysts, S. Fukuzumi*, Y. Yamada, T. Suenobu, K. Ohkubo, H. Kotani, Energy Environ. Sci. 4, 2754-2766 (2011). (DOI: 10.1039/c1ee01551f)
108. X-Ray crystal structure of [HSm{V(IV)O(TPPS)}]n and encapsulation of nitrogen molecules in 1-D channels, W. T. Chen, Y. Yamada, G. N. Liu, A. Kubota, T. Ichikawa, Y. Kojima, G. C. Guo, S. Fukuzumi*, Dalton Trans 40, 12826-12831 (2011). (DOI: 10.1039/c1dt10956a)
109. Effects of p-substituents on electrochemical CO oxidation by Rh porphyrin-based catalysts, S. Yamazaki*, Y. Yamada, S. Takeda, M. Goto, T. Ioroi, Z. Siroma, K. Yasuda, Phys. Chem. Chem. Phys. 12, 8968-8976 (2010). (DOI: 10.1039/b925413g)
110. Cu/Co3O 4 Nanoparticles as Catalysts for Hydrogen Evolution from Ammonia Borane by Hydrolysis, Y. Yamada*, K. Yano, Q. Xu, S. Fukuzumi*, J. Phys. Chem. C 114, 16456-16462 (2010). (DOI: 10.1021/jp104291s)
111. Hydrogen peroxide as sustainable fuel: electrocatalysts for production with a solar cell and decomposition with a fuel cell, Y. Yamada*, Y. Fukunishi, S. Yamazaki, S. Fukuzumi*, Chem. Commun. 46, 7334-7336 (2010). (DOI: 10.1039/c0cc01797c)
112. Perovskite catalyst (La, Ba)(Fe, Nb, Pd)O 3 applicable to NOx storage and reduction system, A. Ueda*, Y. Yamada, M. Katsuki, T. Kiyobayashi, Q. Xu, N. Kuriyama, Catal. Commun. 11, 34-37 (2009). (DOI: 10.1016/j.catcom.2009.08.008)
113. Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin, M. Suzuki, M. Abe, T. Ueno*, S. Abe, T. Goto, Y. Toda, T. Akita, Y. Yamada, Y. Watanabe*, Chem. Commun., 4871-4873 (2009). (DOI: 10.1039/b908742g)
114. Structural Characteristics and Catalytic Activity of Nanocrystalline Ceria−Praseodymia Solid Solutions, B. M. Reddy*, G. Thrimurthulu, L. Katta, Y. Yamada, S.-E. Park, J. Phys. Chem. C 113, 15882-15890 (2009). (DOI: 10.1021/jp903644y)
115. Thermal Stability and Dispersion Behavior of Nanostructured CexZr1−xO 2 Mixed Oxides over Anatase-TiO2: A Combined Study of CO Oxidation and Characterization by XRD, XPS, TPR, HREM, and UV−Vis DRS, B. M. Reddy*, P. Bharali, P. Saikia, G. Thrimurthulu, Y. Yamada, T. Kobayashi, Ind. Eng. Chem. Res. 48, 453-462 (2009). (DOI: 10.1021/ie8012677)
116. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions, S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang, G. A. Somorjai*, Nature Materials 8, 126-131 (2009). (DOI: 10.1038/nmat2329)
117. Sum Frequency Generation and Catalytic Reaction Studies of the Removal of Organic Capping Agents from Pt Nanoparticles by UV−Ozone Treatment, C. Aliaga, J. Y. Park, Y. Yamada, H. S. Lee, C.-K. Tsung, P. Yang, G. A. Somorjai*, J. Phys. Chem. C 113, 6150-6155 (2009). (DOI: 10.1021/jp8108946)
118. Near-Monodisperse Ni−Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation, Y. Zhang, W. Huang, S. E. Habas, J. N. Kuhn, M. E. Grass, Y. Yamada, P. Yang, G. A. Somorjai*, J. Phys. Chem. C 112, 12092-12095 (2008). (DOI: 10.1021/jp805788x)
119. Hydrogen production via steam reforming of ethyl alcohol over nano-structured indium oxide catalysts, T. Umegaki, K. Kuratani, Y. Yamada, A. Ueda, N. Kuriyama, T. Kobayashi, Q. Xu*, J. Power Sources 179, 566-570 (2008). (DOI: 10.1016/j.jpowsour.2008.01.010)
120. Structural Characterization and Catalytic Activity of Nanosized Ceria−Terbia Solid Solutions, B. M. Reddy*, P. Saikia, P. Bharali, Y. Yamada, T. Kobayashi, M. Muhler, W. Grünert, J. Phys. Chem. C 112, 16393-16399 (2008). (DOI: 10.1021/jp806131r)
121. Electrochemical oxidation of oxalic acid by Rh octaethylporphyrin adsorbed on carbon black at low overpotential, S. Yamazaki*, Y. Yamada, N. Fujiwara, T. Ioroi, Z. Siroma, H. Senoh, K. Yasuda, J. Electroanal. Chem. 602, 96-102 (2007). (DOI: 10.1016/j.jelechem.2006.12.010)
122. Non-stoichiometric quinhydrone-type CT complexes: Mixed crystals of triptycenequinone and 1,4-dimethoxytriptycene with characteristic color caused by local CT interaction, K. Yamamura, J. Yamane, K. Eda*, F. Tajima, Y. Yamada, M. Hashimoto, J. Mol. Struct. 842, 12-16 (2007). (DOI: 10.1016/j.molstruc.2006.12.004)
123. Tuning the Formation of Cadmium(II) Urocanate Frameworks by Control of Reaction Conditions: Crystal Structure, Properties, and Theoretical Investigation, R.-Q. Zou, R.-Q. Zhong, L. Jiang, Y. Yamada, N. Kuriyama, Q. Xu*, Chem. Asian J. 1, 536-543 (2006). (DOI:
124. Strong fluorescent emission of a new fourfold-interpenetrated diamonDOId metal-organic framework of zinc(II) urocanate with one-dimensional open channels, R.-Q. Zou, Y. Yamada, Q. Xu*, Microporous Mesoporous Mater. 91, 233-237 (2006). (DOI: 10.1016/j.micromeso.2005.11.048)
125. A direct CO polymer electrolyte membrane fuel cell, S. Yamazaki*, T. Ioroi, Y. Yamada, K. Yasuda, T. Kobayashi, Angew. Chem. 45, 3120-3122 (2006). (DOI: 10.1002/anie.200504379)
126. A novel DME steam-reforming catalyst designed with fact database on-demand, Y. Yamada*, T. Mathew, A. Ueda, H. Shioyama, T. Kobayashi*, Appl. Surf. Sci. 252, 2593-2597 (2006). (DOI: 10.1016/j.apsusc.2005.05.087)
127. Utilization of combinatorial method and high throughput experimentation for the development of heterogeneous catalysts, Y. Yamada*, T. Kobayashi*, J. Jpn. Petrol. Inst. 49, 157-167 (2006). (DOI: 10.1627/jpi.49.157)
128. Optimization of reaction conditions for cyclohexene epoxidation with H2O2 over nanocrystalline mesoporous TiO 2 loaded with RuO2, T. Sreethawong, Y. Yamada*, T. Kobayashi, S. Yoshikawa*, J. Mol. Catal. A: Chem. 248, 226-232 (2006). (DOI: 10.1016/j.molcata.2005.12.034)
129. C2F 6 plasma treatment of a carbon support for a PEM fuel cell electrocatalyst, H. Shioyama*, K. Honjo, M. Kiuchi, Y. Yamada, A. Ueda, N. Kuriyama, T. Kobayashi, J. Power Sources 161, 836-838 (2006). (DOI: 10.1016/j.jpowsour.2006.05.046)
130. Structural characterization and oxidative dehydrogenation activity of V2O5/CexZr1-xO2/SiO 2 catalysts, B. M. Reddy*, P. Lakshmanan, S. Loridant, Y. Yamada, T. Kobayashi, C. Lopez-Cartes, T. C. Rojas, A. Fernandez, J. Phys. Chem. B 110, 9140-9147 (2006). (DOI: 10.1021/jp061018k)
131. Effect of support on the activity of Ga2O3 species for steam reforming of dimethyl ether, T. Mathew, Y. Yamada*, A. Ueda, H. Shioyama, T. Kobayashi, C. S. Gopinath, Appl. Catal. A 300, 58-66 (2006). (DOI: 10.1016/j.apcata.2005.10.047)
132. Estimation of specific interaction between several Co porphyrins and carbon black: its influence on the electrocatalytic O 2 reduction by the porphyrins, S. Yamazaki*, Y. Yamada, T. Ioroi, N. Fujiwara, Z. Siroma, K. Yasuda, Y. Miyazaki, J. Electroanal. Chem. 576, 253-259 (2005). (DOI: 10.1016/j.jelechem.2004.10.022)
133. Efficient electrochemical conversion of carbon monoxide by rhodium octaethylporphyrin adsorbed on carbon black, S. Yamazaki*, Y. Yamada, K. Yasuda, Inorg. Chem. 44, 6512-6514 (2005). (DOI: 10.1021/ic050911f)
134. A semiconductor gas sensor system for high throughput screening of heterogeneous catalysts for the production of benzene derivatives, Y. Yamada*, A. Ueda, H. Shioyama, T. Maekawa, K. Kanda, K. Suzuki, T. Kobayashi, Meas. Sci. Technol. 16, 229-234 (2005). (DOI: 10.1088/0957-0233/16/1/030)
135. Instruments for preparation of heterogeneous catalysts by an impregnation method, Y. Yamada*, T. Akita, A. Ueda, H. Shioyama, T. Kobayashi, Rev. Sci. Instrum. 76, 062226 (2005). (DOI: 10.1063/1.1938287)
136. Catalysis of nanocrystalline mesoporous TiO 2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxide additives, T. Sreethawong, Y. Yamada*, T. Kobayashi, S. Yoshikawa*, J. Mol. Catal. A: Chem. 241, 23-32 (2005). (DOI: 10.1016/j.molcata.2005.07.009)
137. Graphite intercalation compounds as PEMFC electrocatalyst supports, H. Shioyama*, Y. Yamada, A. Ueda, T. Kobayashi, Carbon 43, 2374-2378 (2005). (DOI: 10.1016/j.carbon.2005.04.019)
138. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3–ZrO 2 solid acid catalysts, B. M. Reddy*, P. M. Sreekanth, Y. Yamada, T. Kobayashi, J. Mol. Catal. A: Chem. 227, 81-89 (2005). (DOI: 10.1016/j.molcata.2004.10.011)
139. Switching of turn conformation in an aspartate anion peptide fragment by NH•••O – hydrogen bonds, A. Onoda, H. Yamamoto, Y. Yamada, K. Lee, S. Adachi, T. A. Okamura, K. Yoshizawa-Kumagaye, K. Nakajima, T. Kawakami, S. Aimoto, N. Ueyama*, Biopolymers 80, 233-248 (2005). (DOI: 10.1002/bip.20187)
140. Metal oxide catalysts for DME steam reforming: Ga2O 3 and Ga2O3–Al2O 3 catalysts with and without copper, T. Mathew, Y. Yamada*, A. Ueda, H. Shioyama, T. Kobayashi, Appl. Catal. A 286, 11-22 (2005). (DOI: 10.1016/j.apcata.2005.02.030)
141. Metal oxide catalysts for DME steam reforming: Ga2O 3 and Ga2O3/Al2O 3 catalysts, T. Mathew, Y. Yamada*, A. Ueda, H. Shioyama, T. Kobayashi, Catal. Lett. 100, 247-253 (2005). (DOI: 10.1007/s10562-004-3463-4)
142. Structures and properties of octaethylporphinato(phenolate)iron(III) complexes with NH…O hydrogen bonds: modulation of Fe–O bond character by the hydrogen bond, D. Kanamori, Y. Yamada, A. Onoda, T. Okamura, S. Adachi, H. Yamamoto, N. Ueyama*, Inorg. Chim. Acta 358, 331-338 (2005). (DOI: 10.1016/j.ica.2004.09.014)
143. The roles of redox and acid–base properties of silica-supported vanadia catalysts in the selective oxidation of ethane, Z. Zhao*, Y. Yamada, A. Ueda, H. Sakurai, T. Kobayashi, Catal. Today 93-95, 163-171 (2004). (DOI: 10.1016/j.cattod.2004.06.130)
144. Reversible electrochemical conversion between Rh(II) and Rh(III) states in Rh porphyrin adsorbed on carbon black, S. Yamazaki*, Y. Yamada, K. Yasuda, Inorg. Chem. 43, 7263-7265 (2004). (DOI: 10.1021/ic0490472)
145. High-throughput screening of PEMFC anode catalysts by IR thermography, Y. Yamada*, A. Ueda, H. Shioyama, T. Kobayashi*, Appl. Surf. Sci. 223, 220-223 (2004). (DOI: 10.1016/s0169-4332(03)00932-2)
146. Stabilization of Carboxylate Anion with a NH···O Hydrogen Bond: Facilitation of the Deprotonation of Carboxylic Acid by the Neighboring Amide NH Groups, A. Onoda, Y. Yamada, J. Takeda, Y. Nakayama, T. Okamura, M. Doi, H. Yamamoto, N. Ueyama*, Bull. Chem. Soc. Jpn. 77, 321-329 (2004). (DOI: 10.1246/bcsj.77.321)
147. Stabilization of calcium- and terbium-carboxylate bonds by NH...O hydrogen bonds in a mononuclear complex: a functional model of the active site of calcium-binding proteins, A. Onoda, Y. Yamada, Y. Nakayama, K. Takahashi, H. Adachi, T. A. Okamura, A. Nakamura, H. Yamamoto, N. Ueyama*, D. Vyprachticky, Y. Okamoto*, Inorg. Chem. 43, 4447-4455 (2004). (DOI: 10.1021/ic035075t)
148. A combinatorial study on catalytic synergism in supported metal catalysts for fuel cell technology, T. Kobayashi*, A. Ueda, Y. Yamada, H. Shioyama, Appl. Surf. Sci. 223, 102-108 (2004). (DOI: 10.1016/s0169-4332(03)00905-x)
149. High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements, Y. Yamada*, A. Ueda, H. Shioyama, T. Kobayashi*, Appl. Catal. A 254, 45-58 (2003). (DOI: 10.1016/s0926-860x(03)00262-x)
150. Simple Preparation Method of Isolated Iron (III) Species on Silica Surface, Y. Yamada*, Y. Ichihashi, H. Ando, A. Ueda, H. Shioyama, T. Kobayashi*, Chem. Lett. 32, 208-209 (2003). (DOI:
151. Electrochemical oxidation of CO in sulfuric acid solution over Pt and PtRu catalysts modified with TaOx and NbOx, A. Ueda*, Y. Yamada, T. Ioroi, N. Fujiwara, K. Yasuda, Y. Miyazaki, T. Kobayashi, Catal. Today 84, 223-229 (2003). (DOI: 10.1016/s0920-5861(03)00277-3)
152. S creening of carbon supports for DMFC electrode catalysts by infrared thermography, H. Shioyama*, Y. Yamada, A. Ueda, T. Kobayashi, Carbon 41, 607-609 (2003). (DOI:
153. Raman and X-ray Photoelectron Spectroscopy Study of CeO2−ZrO 2 and V2O5/CeO2−ZrO 2 Catalysts, B. M. Reddy*, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, Langmuir 19, 3025-3030 (2003). (DOI: 10.1021/la0208528)
154. Structural Characterization of CeO2−MO 2 (M = Si4+, Ti4+, and Zr4+) Mixed Oxides by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Other Techniques, B. M. Reddy*, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B 107, 11475-11484 (2003). (DOI: 10.1021/jp0358376)
155. Structural Characterization of CeO2−TiO 2 and V2O5/CeO2−TiO 2 Catalysts by Raman and XPS Techniques, B. M. Reddy*, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B 107, 5162-5167 (2003). (DOI: 10.1021/jp0344601)
156. Synthesis of Surfactant-assisted Microporous Layered Tin Phenylphosphonate, N. K. Mal, M. Fujiwara*, Y. Yamada, M. Matsukata, Chem. Lett. 32, 292-293 (2003). (DOI: 10.1246/cl.2003.292)
157. Synthesis of a microporous layered titanium phenylphosphonate in presence of sodium dodecylsulfate, N. K. Mal, M. Fujiwara, Y. Yamada, K. Kuraoka, M. Matsukata*, J. Ceram. Soc. Jpn. 111, 219-221 (2003). (DOI: 10.2109/jcersj.111.219)
158. Optimization of Fe/SiO 2 based metal oxides as selective oxidation catalyst of propane with combinatorial approach, Y. Yamada*, A. Ueda, K. Nakagawa, T. Kobayashi, Res. Chem. Intermed. 28, 397-407 (2002). (DOI: 10.1163/156856702760346815)
159. Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO 2 solid acid catalysts by XPS and other techniques, B. M. Reddy*, P. M. Sreekanth, Y. Yamada, Q. Xu, T. Kobayashi, Appl. Catal. A 228, 269-278 (2002). (DOI:
160. Surface Characterization of La2O3−TiO 2 and V2O5/La2O3−TiO 2 Catalysts, B. M. Reddy*, P. M. Sreekanth, E. P. Reddy, Y. Yamada, Q. Xu, H. Sakurai, T. Kobayashi, J. Phys. Chem. B 106, 5695-5700 (2002). (DOI: 10.1021/jp014487p)
161. Surface Characterization of CeO2/SiO 2 and V2O5/CeO2/SiO 2 Catalysts by Raman, XPS, and Other Techniques, B. M. Reddy*, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, J.-C. Volta, J. Phys. Chem. B 106, 10964-10972 (2002). (DOI: 10.1021/jp021195v)
162. Mononuclear Ca(II)−Bulky Aryl−Phosphate Monoanion and Dianion Complexes with Ortho-Amide Groups, A. Onoda, Y. Yamada, T. Okamura, H. Yamamoto, N. Ueyama*, Inorg. Chem. 41, 6038-6047 (2002). (DOI: 10.1021/ic010570f)
163. Synthesis of Zigzag-Chain and Cyclic-Octanuclear Calcium Complexes and Hexanuclear Bulky Aryl-Phosphate Sodium Complexes with Ortho-Amide Groups: Structural Transformation Involving a Network of Inter- and Intramolecular Hydrogen Bonds, A. Onoda, Y. Yamada, T. Okamura, M. Doi, H. Yamamoto, N. Ueyama*, J. Am. Chem. Soc. 124, 1052-1059 (2002). (DOI: 10.1021/ja011457r)
164. Rapid evaluation of oxidation catalysis by gas sensor system: total oxidation, oxidative dehydrogenation, and selective oxidation over metal oxide catalysts, Y. Yamada*, A. Ueda, Z. Zhao, T. Maekawa, K. Suzuki, T. Takada, T. Kobayashi, Catal. Today 67, 379-387 (2001). (DOI: 10.1016/S0920-5861(01)00330-3)
165. Synthesis and characterization of Ti-MCM-41 and vapor-phase epoxidation of propylene using H 2 and O 2 over Au/Ti-MCM-41, B. S. Uphade, Y. Yamada, T. Akita, T. Nakamura, M. Haruta*, Appl. Catal. A 215, 137-148 (2001). (DOI: 10.1016/S0926-860X(01)00527-0)
166. Secure Binding of Alternately Amidated Poly(acrylate) to Crystalline Calcium Carbonate by NH···O Hydrogen Bond, N. Ueyama*, H. Kozuki, M. Doi, Y. Yamada, K. Takahashi, A. Onoda, T. Okamura, H. Yamamoto, Macromolecules 34, 2607-2614 (2001). (DOI: 10.1021/ma001771q)
167. Novel catalysts having NOx-adsorption sites for the selective oxidation of ethane, A. Ueda*, Y. Yamada, T. Kobayashi, Appl. Catal. A 209, 391-399 (2001). (DOI: 10.1016/S0926-860X(00)00778-X)
168. Dinuclear Calcium Complex with Weakly NH···O Hydrogen-Bonded Sulfonate Ligands, A. Onoda, Y. Yamada, M. Doi, T. Okamura, N. Ueyama*, Inorg. Chem. 40, 516-521 (2001). (DOI: 10.1021/ic0003067)
169. Oxidation of ethane into acetaldehyde and acrolein over silica containing cesium and a very small amount of additives, Z. Zhao, Y. Yamada, A. Ueda, H. Sakurai, T. Kobayashi*, Appl. Catal. A 196, 37-42 (2000). (DOI: 10.1016/S0926-860X(99)00451-2)
170. Selective Oxidation of Ethane to Acetaldehyde and Acrolein over Silica-Supported Vanadium Catalysts Using Oxygen as Oxidant, Z. Zhao*, Y. Yamada*, Y. Teng, A. Ueda*, K. Nakagawa, T. Kobayashi*, J. Catal. 190, 215-227 (2000). (DOI: 10.1006/jcat.1999.2740)
171. 分子内NH···O水素結合により強化された炭酸ストロンチウム結晶と高分子カルボシラート配位子との複合体の合成, 上山憲一*、山田裕介、上月秀一、岡村高明、高分子論文集,57, 228-232 (2000). (DOI: 10.1295/koron.57.228)
172. Dinuclear Calcium Complexes with Intramolecularly NH···O Hydrogen-Bonded Dicarboxylate Ligands, N. Ueyama*, J. Takeda, Y. Yamada, A. Onoda, T. Okamura, A. Nakamura*, Inorg. Chem. 38, 475-478 (1999). (DOI: 10.1021/ic981055t)
173. Acrolein formation in the oxidation of ethane over silica catalysts supporting iron and cesium, K. Nakagawa, Y. Teng, Z. Zhao, Y. Yamada, A. Ueda, T. Suzuki, T. Kobayashi*, Catal. Lett. 63, 79-82 (1999). (DOI: 10.1023/A:1019044316231)
174. Polymeric and dimeric magnetic properties of square planar Cu(II) species controlled by hydrogen bond networks: [CuII(OCO-2,6-(CH3CONH)2C6H3}2(H2O)2]•nH2O (n= 1,4), Y. Yamada, N. Ueyama*, T. Okamura, W. Mori, A. Nakamura, Inorg. Chim. Acta 275-276, 43-51 (1998). (DOI: 10.1016/S0020-1693(97)06144-6)
175. Synthesis and Properties of Octaethylporphinato(arenethiolato)iron(III) Complexes with Intramolecular NH···S Hydrogen Bond: Chemical Function of the Hydrogen Bond, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, S. Oka, H. Sakurai, A. Nakamura*, Inorg. Chem. 37, 2415-2421 (1998). (DOI: 10.1021/ic971140l)
176. Structure and properties of tetraphenylporphinate iron(III) complexes with an intramolecular NH•••S benzenethiolate or NH•••O phenolate hydrogen bond, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, A. Nakamura, Inorg. Chim. Acta 283, 91-97 (1998). (DOI: 10.1016/S0020-1693(98)00091-7)
177. Calcium Complexes of Carboxylate-Containing Polyamide with Sterically Disposed NH···O Hydrogen Bond: Detection of the Polyamide in Calcium Carbonate by13C Cross-Polarization/Magic Angle Spinning Spectra, N. Ueyama, T. Hosoi, Y. Yamada, M. DOI, T.-a. Okamura, A. Nakamura, Macromolecules 31, 7119-7126 (1998). (DOI: 10.1021/ma9716847)
178. Magnetic properties or intramolecularly hydrogen-bonded carboxylate copper(ⅠⅠ) dimer complexes, N. Ueyama*, Y. Yamada, J. Takeda, T. Okamura, W. Mori, A. Nakamura*, Chem. Commun., 1377-1378 (1996). (DOI: 10.1039/CC9960001377)
179. Structure and Properties of [Fe4S4{2,6-bis(acylamino)benzenethiolato-S}4] 2- and [Fe2S2{2,6-bis(acylamino)benzenethiolato-S}4]2-: Protection of the Fe−S Bond by Double NH···S Hydrogen Bonds, N. Ueyama*, Y. Yamada, T. Okamura, S. Kimura, A. Nakamura*, Inorg. Chem. 35, 6473-6484 (1996). (DOI: 10.1021/ic9604324)
180. Cytochrome P-450 Model (Porphinato)(thiolato)iron(III) Complexes with Single and Double NH···S Hydrogen Bonds at the Thiolate Site, N. Ueyama*, N. Nishikawa, Y. Yamada, T. Okamura, A. Nakamura*, J. Am. Chem. Soc. 118, 12826-12827 (1996). (DOI: 10.1021/ja9622970)
181. Crystal and Solution Structures of Novel Bulky Bis[2,6-bis(acylamino)phenyl] Disulfides. Absence of Covalent NH···S Hydrogen Bond between Amide NH and Neighboring Disulfide in Bis[2,6-bis(pivaloylamino)phenyl] Disulfide, N. Ueyama*, T. Okamura, Y. Yamada, A. Nakamura*, J. Org. Chem. 60, 4893-4899 (1995). (DOI: 10.1021/jo00120a037)
査読のある国際会議論文(プロシーディング、英文:11報)
1. Combinatorial Catalysis for Hydrogen Production from Ethanol, Y. Yamada, T. Akita, T. Umegaki, T. Mathew, A. Ueda, H. Shioyama, T. Kobayashi, Material Research Society Proceedings , 894, 183-190 (2005).
2. Synthesis and Characterization of Microporous Layered Zirconium Phenylphosphonate, N. K. Mal, M. Sasidharan, M. Fujiwara, Y. Yamada and M. Matsukata, Stud. Surf. Sci. Catal., 154, 1153-1159 (2004).
3. Combinatorial Catalysis Concerning PEMFC Technology, Y. Yamada, A. Ueda, H. Shioyama, N. Fujiwara, T. Ioroi, K. Yasuda, Y. Miyazaki, T. Kobayashi, Trans. Mat. Res. Soc. Jpn., 29 , 309-313 (2004).
4. Combinatorial Catalysis Survey Concerning Proton Exchange Membrane Fuel Cell Technology - As a Part of “MATERIOMICS”-, Y. Yamada, A. Ueda, H. Shioyama, T. Mathew, T. Ioroi, K. Yasuda, T. Akita, S. Ichikawa, K. Tanaka, M. Kohyama, T. Kobayashi, Material Research Society Proceedings , 804, 205-210 (2003).
5. Analytical TEM Observations of Combinatorial Catalyst Libraries for Hydrogen Production; As a Part of “MATERIOMICS”-, T. Akita, A. Ueda, Y. Yamada, S. Ichikawa, K. Tanaka, M. Kohyama, T. Kobayashi, Material Research Society Proceedings , 804, 211-216 (2003).
6. High Throughput Experiment on the Investigation of Oxidation Catalysts with Gas Sensor System, Y. Yamada, A. Ueda, T. Kobayashi, Stud. Surf. Sci. Catal., 145, 275-278 (2003).
7. Vapor-Phase Epoxidation of Propene Using H 2 and O 2 over Au/Ti-MCM-41 and Au/Ti-MCM-48, B. S. Uphade, M. Okumura, Y. Yamada, S. Tsubota, M. Haruta, Stud. Surf. Sci. Catal. , 130, 833-838 (2000). (DOI: 10.1016/S0167-2991(00)81062-9)
8. Potential of Gas Sensor System for High Throughput Screening of Combinatorial Catalysts, Y. Yamada, M. Ando, A. Ueda, T. Kobayashi, K. Suzuki, T. Maekawa, T. Takada, in NATO ASI Series, “Combinatorial Catalysis and High Throughput Catalyst Design and Testing ”, C560, 415-421, Kluwer Academic Publishers,Netherland (2000)
9. Utilization of Odor Sensor System for High Throughput Catalysts, Y. Yamada, A. Ueda, M. Ando, T. Kobayashi, T. Maekawa, K. Suzuki, T. Takada, Proceedings of 196th meeting of the electrochemical society "Chemical Sensors IV", 99, 143-148 (1999).
10. Strong Binding of Ca 2+ Ion by Intramolecularly Hydrogen Bonded Carboxylate Ligand, Y. Yamada, N. Ueyama, T. Okamura, S. Kubo, K. Yamaguchi, A. Nakamura, J. Inorg. Biochem. , 67, 34 (1997). (DOI: 10.1016/S0162-0134(97)89916-3)
11. (Porphinato)(thiolato)iron(III) Complexes with NH···S Hydrogen Bonds at the Thiolate Site, A. Nakamura, N. Ueyama, N. Nishikawa, Y. Yamada, T. Okamura, FASEB J., 11, 54 (1997).
解説・総説記事(和文:14編)
1. 「過酸化水素を救え」山田裕介、化学、76, 68-69 (2021).
2. 「過酸化水素のエネルギー利用技術」山田裕介、ケミカルエンジニアリング、64, 466-470 (2019).
3. 「種々の担体上での複合型光触媒水素発生系の構築」山田裕介、田部博康、JXTG Technical Review, 60, 84-90 (2018).
4. 「シアノ架橋金属錯体ポリマーの固体触媒としての利用」山田裕介、Bull. Jpn. Soc. Coord. Chem., 68, 16-28 (2016).
5. 「コンビナトリアル触媒開発のこれまで」山田裕介、セラミックス, 45, 738 -743 (2010).
6. 「ユビキタスエネルギーデバイス用触媒におけるマテリオミクス」山田裕介、上田厚、梅垣哲士、マテリアルインテグレーション, 21, 39-44 (2008)
7. 「環境エネルギー材料開発のためのコンビケム技術」山田裕介、小林哲彦、ケミカルエンジニアリング, 51, 1-6 (2006)
8. 「コンビ触媒研究と表面構造解析」山田裕介、秋田知樹、田中孝治、香山正憲、小林哲彦、表面科学 , 25, 699-705 (2004)
9. 「金属/酸化物触媒の構造解析」田中孝治、秋田知樹、山田裕介、上田厚、まてりあ, 42 , 897 (2003)
10. 「コンビナトリアルケミストリの固体触媒への展開」小林哲彦、山田裕介、化学工業, 51 , 121-127 (2002)
11. 「コンビナトリアルケミストリーの固体触媒への適用」山田裕介、小林 哲彦、ペトロテック, 24 , 788-791 (2001)
12. 「コンビナトリアルケミストリにおける固体触媒パラレル調製と人工知能利用」山田裕介、小林哲彦、水野哲孝、触媒, 43, 310-315 (2001)
13. 「固体触媒の開発」小林哲彦、山田裕介、機能材料, 21, 38-44 (2001).
14. 「固体触媒へのコンビナトリアルケミストリの導入と迅速ガス分析の必要性」山田裕介、小林哲彦、化学センサ, 15, 100-108 (1999)
著書(分担執筆、英文:7編、和文:7編)
1. 「10-7 基本的な代謝経路」山田裕介「触媒総合事典」(触媒学会編集)(2023) 印刷中
2. Nanocatalysis of Prussian Blue Analogues Related to H2O 2 Production and Utilization, Y. Yamada and H. Tabe, in Heterogeneous Nanocatalysis for Energy and Environmental Sustainability, Vol. 1 , edited by P. Sudarsanam, Y. Yamauchi, P. Bharali, John Wiley & Sons (2023) pp. 259-274.
3. 「統合型光触媒系の原理」山田裕介「光エネルギー変換における分子触媒の新展開」(日本化学会編)化学同人(2020) pp. 20-25.
4. 「統合型分子・ナノ粒子触媒によるエネルギー創製」山田裕介「光エネルギー変換における分子触媒の新展開」(日本化学会編)化学同人(2020) pp. 76-81.
5. Electrocatalysts for Hydrogen Peroxide Reduction Used in Fuel Cells, Y. Yamada, in Anion Exchange Membrane Fuel Cells , edited by L. An and T. S. Zhao, Nature-Springer (2018) pp. 141-168 (ISBN: 978-3-319-71370-0)
6. Photocatalytic Production of Hydrogen with Earth-Abundant Metal Catalysts, S. Fukuzumi, Y. Yamada, in Sustainable Inorganic Chemistry , edited by D. A. Atwood, John Wiley & Sons (2016) pp. 439–450 (ISBN:9781118703427).
7. Kinetics and Mechanisms of Reduction of Protons and Carbon Dioxide Catalyzed by Metal Complexes and Nanoparticles, S. Fukuzumi, T. Suenobu, Y. Yamada, in Organometallics and Related Molecules for Energy Conversion , edited by W.-Y. Wong, Wiley-VCH (2015) pp. 313-346
8. Photocatalytic Hydrogen Evolution, Y. Yamada, S. Fukuzumi, in Fuel Production with Heterogeneous Catalysis, edited by J. Sa and C. Hardacre, Taylor & Francis (2014) pp. 63-91 (ISBN: 978-1-4822-0371-4).
9. 「光触媒水素発生系における水素発生触媒」山田裕介、福住俊一「人工光合成—システム構築に向けての最新技術動向—」(福住俊一 監修)シーエムシー出版(2013) pp. 43-52.
10. 「過酸化水素燃料電池」山田裕介、福住俊一「人工光合成—システム構築に向けての最新技術動向—」(福住俊一 監修)シーエムシー出版(2013) pp. 253-262.
11. Gas Sensor Technology for the High Throughput Screening in Catalysis, Y. Yamada, T. Kobayashi in High-Throughput Screening in Chemical Catalysis , Wiley-VCH (2004) pp. 189-210.
12. High-Throughput Screening of Oxidation Catalysts with Gas Sensors, Y. Yamada, T. Kobayashi in High-Throughput Analysis: “A Tool for Combinatorial Materials Science , edited by R. A. Potyrailo and E. J. Amis, Kluwer Academic/Plenum Publishers (2003) pp. 247-260.
13. 「コンビナトリアル触媒」山田裕介、小林哲彦、「実験化学講座 第5版」(25巻)丸善(2006)pp. 194-200.
14. 「コンビナトリアル触媒」山田裕介、小林哲彦、「コンビナトリアルサイエンスの新展開」(高橋孝志、鯉沼秀臣、上田充美編)シーエムシー出版(2002)pp. 214-225.
特許(国外:5編、国内:28編(出願中6編を含む))
1. “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”,Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada, 韓国特許10-1319680 (11-Oct-2013成立).
2. “Nanocrystal Assembly for Tandem Catalysis”,Peidong Yang, Gabor A. Somorjai, Yusuke Yamada, Chia-Kuang Tsung, Wenyu Huang, U.S. patent, application serial no. 13/441,240 filed on 06-Apr-2012.
3. “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”,Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada, India Patent, 832/MUMNP/2011 filed on 25-July-2011.
4. “Exhaust Gas Treating Catalyst and Exhaust Gas Purification Apparatus Using the Same”,Masatoshi Katsuki, Shuuji Fujii, Atsushi Ueda, Yusuke Yamada, PCT/JP2009/058331 filed on 29-Apr-2011.
5. “Apparatus for Evaluating Catalyst Performance”, Yusuke Yamada, Atsushi Ueda, Tetsuhiko Kobayashi, PCT/99310575 filed on 25-Dec-1998.
6. 特願2021-029892 「ペプチド-過酸化水素付加物及びその製造方法」山田裕介、田部博康 (2021.2.26)
7. 特願2019-035332「多孔質構造体」山田裕介、田部博康、山根真里 (2019.2.28)
8. 特願2017-165594「有機リン化合物分解触媒」山田裕介、田部博康、寺島千尋 (2017.8.30)
9. 特許第5414035号「一酸化炭素の化学的酸化用触媒」山田裕介、山﨑眞一、上田厚、安田和明、城間純、栗山信宏 (2013.11.22)
10. 特許第5388052号「排ガス処理触媒」勝木将利、藤井秀治、上田厚、山田裕介(2013.10.18)
11. 特許第5019449号「一酸化炭素の化学的酸化用触媒」山﨑眞一、上田厚、安田和明、城間純、山田裕介(2012.6.22)
12. 特許第4985351号「排ガス処理触媒および排ガス浄化装置」上田 厚、山田裕介、勝木将利、藤井秀治(2012.5.11)
13. 特許第4779107号「触媒フィルタ、および空気浄化装置」吉田恵一郎、松井数馬、徳島一雄、小林哲彦、上田厚、山田裕介 (2011.7.15)
14. 特許第4755131号「複合酸化物触媒およびその製造方法並びに排ガス浄化装置」藤井秀治、勝木勝利、上田厚、山田裕介 (2011.6.3)
15. 特許第4696231号「触媒フィルタの製造法」吉田恵一郎、松井数馬、徳島一雄、小林哲彦、上田厚、山田裕介 (2011.3.11)
16. 特許第4635248号「固体高分子形燃料電池用カソード電極触媒とその製造方法」山﨑眞一、安田和明、山田裕介 (2010.12.3)
17. 特許第4613350号「一酸化炭素の電気化学的酸化用触媒」山﨑眞一、山田裕介、小林哲彦、五百蔵勉 (2010.10.29)
18. 特許第4599539号「固体高分子形燃料電池用カソード電極触媒」塩山洋、山田裕介、上田厚、五百蔵勉 (2010.10.8)
19. 特許第4568881号「一酸化炭素の電気化学的酸化用触媒」山﨑眞一、安田和明、山田裕介、五百蔵勉 (2010.8.20)
20. 特許第4543167号「脱臭剤及びその製造方法」平澤 政明、上田厚、塩山洋、小林哲彦、山田裕介 (2010.7.9)
21. 特許第4471191号「脱臭触媒の製造方法」平澤政明、中里浩一、上田厚、山田裕介(2010.3.12)
22. 特許第4469953号「シュウ酸類の電気化学的酸化反応用触媒」山﨑眞一、安田和明、山田裕介(2010.3.12)
23. 特許第4289662号「カーボンナノチューブを用いたシート状触媒構造体およびその製造方法」塩山洋、山田裕介、稲住近、岸田将明、西良友紀、石辺二朗、藤田大祐、澤井百世、中山喜萬 (2009.4.10)
24. 特許第4264514号「ジメチルエーテル改質用触媒およびこれを用いる水素含有ガスの製造方法」山田裕介、トーマスマテユー、上田厚、小林哲彦 (2010.3.12)
25. 特許第4022615号「水性ガスシフト反応及びメタノール水蒸気改質反応用触媒」上田厚、山田裕介、小林哲彦 (2007.10.12)
26. 特許第4019145号「封入体フリーの組換えタンパク質を得る方法」河田悦和、矢野伸一、山田裕介 (2007.10.5)
27. 特許第4016100号「水性ガスシフト反応用触媒」上田厚、山田裕介、小林哲彦、藤原直子、浮田圭一朗 (2007.9.28)
28. 特許第3959459号「触媒性能評価装置」山田裕介、上田厚、小林哲彦(2007.5.25)
29. 特許第3940794号「排ガス中の炭化水素燃焼用触媒及び排ガス中の炭化水素燃焼方法」山田裕介、田渕光春、上田厚、小林哲彦 (2007.4.13)
30. 特許第3861146号「燃料電池用負極触媒」上田厚、山田裕介、小林哲彦、藤原直子、浮田圭一朗 (2006.10.6)
31. 特開2005-246111「ジメチルエーテル改質用触媒およびこれを用いる水素含有ガスの製造方法」山田裕介、トーマスマテユー、上田厚、小林哲彦 (2004.3.1)
32. 特開2005-056686「固体高分子形燃料電池におけるカソード」塩山洋、山田裕介 (2003.8.5)
33. 特開2003-310723「空気浄化装置、および触媒」吉田恵一郎、上田厚、山田裕介、小林哲彦 (2002.4.22)