微分幾何学セミナー(2024年度)

大阪公立大学数学研究所(OCAMI) での事業の一環として、 (幾何解析、トポロジー、代数幾何、数理物理、可積分系、情報数理などにも関わる広い意味の)微分幾何学のセミナーを推進します。

微分幾何学セミナー(年度別一覧)

微分幾何学セミナー(2024年度)講演一覧

日時 2024年12月16日(月)16:45-18:15
講演者(所属)

稲場 道明(奈良女子大学)

タイトル 放物線接続のモジュライ空間上の大域代数関数
場所 理学部E棟4階 大講究室(E408)
アブストラクト Simpsonによる理論において,3つのモジュライ空間,de Rhamモジュライ空間、 Dolbeaultモジュライ空間、Bettiモジュライ空間の間に対応関係がある. de Rhamモジュライ空間は可積分接続のモジュライ空間,Dolbeaultモジュライ空 間はHiggs束のモジュライ空間,Bettiモジュライ空間は基本群の表現のモジュラ イ空間のことである. これら 3 つのモジュライ空間はすべて代数多様体として構成されるが,それら の構造は異なるようである. 対数的接続の場合,de Rhamモジュライ空間として,行列式束を固定した放物線 接続のモジュライ空間を考える. この場合,de Rhamモジュライ空間上の大域代数関数なす環の超越次数が,モジ ュライ空間の次元の半分以下であることが示すことができる. その系として,de Rhamモジュライ空間からBettiモジュライ空間へのRiemann-- Hilbert射が代数的ではないことがわかる. この講演の内容は,Biswas--光明--齋藤との共同研究に基づく.
日時 2024年12月6日(金)16:45-18:15
講演者(所属)

新田 泰文(東京理科大学)

タイトル Fano 多様体上の重み付きスカラー曲率一定 Kähler 計量と v ソリトンについて
場所 理学部E棟2階 第10講義室(E211)
アブストラクト 重み付きスカラー曲率一定 Kähler 計量とは Kähler 多様体に対して定義される標準計量の一種であり, スカラー曲率一定 Kähler 計量や端的 Kähler 計量, Kähler-Ricci ソリトンといった広範囲の標準計量を特別な場合として含むものである. 一方, Fano 多様体に対しては v ソリトンと呼ばれる Kähler-Einstein 計量の一般化が知られており, こちらも様々な標準計量を含む大きな枠組みとなっている. 本講演の目的は Fano 多様体における重み付きスカラー曲率一定 Kähler 計量と v ソリトンとの間のある関係について述べることである. 具体的には, Fano 多様体において v ソリトンと (1, 2(n+1 - v))-重み付きスカラー曲率一定 Kähler 計量という見かけ上全く異なる標準計量の存在が実は同値であることを示す. また, その特別な場合として満渕定数が 1 未満である Fano 多様体において反標準偏極における端的 Kähler 計量の存在と満渕ソリトンの存在が同値であることを説明する. 本講演の内容は Vestislav Apostolov 氏と Abdellah Lahdili 氏との共同研究に基づく.
日時 2024年11月27日(水)16:45-18:15
講演者(所属)

David O’Connell (Okinawa Institute of Science and Technology)

タイトル Non-Hausdorff Differential Geometry
場所 理学部F棟4階 中講究室(F415)
アブストラクト It is standard practice to impose the Hausdorff property within the definition of a manifold. This is for good reason: Hausdorffness gives us access to partitions of unity subordinate to any open cover, and these in turn can be used to construct various objects of geometric interest. In this talk we will boldly take the opposite approach and see what happens when we relax the Hausdorff property in the definition of a manifold. A priori, it may seem that such spaces are too difficult to study without arbitrarily-existent partitions of unity. However, through a series of tricks it is possible to avoid this problem and construct various things like smooth structures, bundles, differential forms and integrals. We will keep the talk pedagogical and start with the basics: firstly we will review the topological properties of non-Hausdorff manifolds, and then we will slowly add more and more structure of interest, until we build up to a description of cohomology. As a final goal, we will describe de Rham cohomology and prove a non-Hausdorff version of de Rham’s theorem, all without appealing to partitions of unity. Finally, we finish with some ongoing ideas regarding the Cech-de Rham equivalence for non-Hausdorff manifolds.
日時 2024年9月9日(月)16:45-18:15
講演者(所属)

Wolfram Bauer(Leibniz Universität Hannover)

タイトル Subriemannian geometry and spectral analysis
場所 理学部F棟4階 中講究室(F415)
アブストラクト A regular subriemannian manifold M carries a geometric hypoelliptic operator, the intrinsic sublaplacian. Due to a degeneracy of its symbol, geometric and analytic e ects can be observed in the study of this operator, which have no counterpart in Riemannian geometry. During the last decades inverse spectral problems in subriemannian geometry have been studied by various authors. Typical approaches are based on the analysis of the induced subriemannian heat or wave equation. In this talk we survey some results in subriemannian geometry. In particular, we address the spectral theory of the sublaplacian in the case of certain compact nilmanifolds or, more generally, for H-type foliations. This talk is based on joint work with K. Furutani, C. Iwasaki, A. Laaroussi, I. Markina and S. Vega-Molino.
日時 2024年7月19日(金)16:45-18:15
講演者(所属)

Wafaa Batat (Ecole Nationale Polytechnique d'Oran Maurice Audin)

タイトル Homogeneous Structures on Three- and Four-dimensional Lie groups
場所 理学部F棟4階 小講究室B(F405)
アブストラクト In this talk, we will introduce the notion of homogeneous pseudo-Riemannian structures and demonstrate how to establish homogeneity and natural reductiveness of 3- and 4-dimensional Lie groups through a tensor satisfying certain geometric partial differential equations involving the metric and the curvature of a given manifold. These equations are known as Ambrose-Singer equations. We will begin by examining homogeneous structures on three-dimensional unimodular and non-unimodular Lie groups, proving the existence of homogeneous Lorentzian structures that differ from the canonical ones without being naturally reductive, a phenomenon with no Riemannian counterpart. Using these homogeneous structures, we will show how to classify naturally reductive 3-dimensional Lorentzian manifolds. Our focus will then shift to the geometric properties of four-dimensional nilpotent Lie groups endowed with a family of non-flat left-invariant Lorentzian metrics. We will conduct a comprehensive classification of homogeneous structures for each metric and meticulously examine the distinctive properties characterizing each structure. Additionally, we will provide a specific example demonstrating the presence of a naturally reductive, non-flat, left-invariant Lorentzian metric on the 2-nilpotent Lie group, where the center exhibits degeneracy. Furthermore, we will establish the existence of a non-canonical homogeneous structure. As an application, we will demonstrate the existence of naturally reductive left-invariant Lorentzian metrics on the four-dimensional 3-nilpotent Lie group.
日時 2024年7月5日(金)16:45-18:15
講演者(所属)

Christopher Mahadeo (University of Illinois at Chicago)

タイトル Topological recursion and twisted Higgs bundles
場所 理学部F棟4階 小講究室B(F405)
アブストラクト Prior works relating meromorphic Higgs bundles to topological recursion have considered non-singular models that allow the recursion to be carried out on a smooth Riemann surface. I will discuss some recent work where we define a "twisted topological recursion" on the spectral curve of a twisted Higgs bundle, and show that the g=0 components of the recursion compute the Taylor expansion of the period matrix of the spectral curve, mirroring a result of for ordinary Higgs bundles and topological recursion. I will also discuss some current work relating topological recursion to a new viewpoint of quantization of Higgs bundles.
日時 2024年5月24日(金)16:45-18:15
講演者(所属)

浅尾 泰彦(福岡大学)

タイトル 距離空間のホモロジー
場所 理学部E棟1階 第9講義室(E101)
アブストラクト 群のホモロジーは純代数的にも定義されるし、その分類空間と呼ばれる位相空間の特異ホモロジーとしても定義できる。群は対象が1つしかない小圏だと思うことができ、群ホモロジーは小圏のホモロジーに一般化される。これは単体複体のホモロジーなど様々なホモロジーを含む広い概念である。ここで小圏とは対象a, bに対してHom(a,b)が集合であるような圏のことを言う。つまりHom(a,b)が圏Setの対象なわけであるが、それではSet以外の圏でも話は進むであろうか。正実数全体をある見方で圏だと思うと、Homが実数の圏とは距離空間のことであり、上の話は距離構造のホモロジーを考えることに翻訳される。距離から誘導される位相のホモロジーではなく距離構造そのもののホモロジーであるが、群の場合同様代数的にも定義されるし、分類空間と呼ばれる位相空間のホモロジーでもあり、この位相は距離から誘導されるものとは違う。このようにして距離構造をトポロジー的に調べる「マグニチュード理論」について講演者の最近の結果を交えながらお話ししたい。

微分幾何学セミナー(2024年度)主催者

連絡先 Tel E-mail
田丸 博士 06-6605-2615 tamaru [at] omu.ac.jp
石田 裕昭 hiroaki.ishida [at] omu.ac.jp
加藤 信 06-6605-2616 shinkato [at] omu.ac.jp
小池 貴之 tkoike [at] omu.ac.jp
田中 潮 utanaka [at] omu.ac.jp
橋本 義規 yhashimoto [at] omu.ac.jp
橋本 要 h-kaname [at] sci.osaka-cu.ac.jp